Für alle $n\in\N$ gilt: $$ n^2\Phi^\dprime(nz)=\sum_{k=0}^{n-1}\Phi^\dprime(z+\tfrac kn)~. $$.
\begin{eqnarray*} n^2\Phi^\dprime(nz) &=&\sum_{j=0}^\infty\frac{n^2}{(nz+j)^2} =\sum_{j=0}^\infty\frac{1}{(z+j/n)^2}\\ &=&\sum_{j=0}^\infty\sum_{k=0}^{n-1}\frac{1}{(z+\frac{jn+k}n)^2} =\sum_{k=0}^{n-1}\sum_{j=0}^\infty\frac{1}{(z+\frac kn+j)^2} =\sum_{k=0}^{n-1}\Phi^\dprime(z+\tfrac kn) \end{eqnarray*}