For all $x\in \R^d$, we have \[ |P_tf(x)| = \Big| \int f(x-y)p_t(y)\, dy \Big|\le \|f(x-\cdot)\|_1 \|p_t\|_{\infty} = \|f\|_1 \|p_t\|_{\infty}. \] Thus, we conclude by Hölder's inequality: \[ \Big| \int P_tf(x)g(x)\, dx \Big|\le \|P_tf\|_{\infty} \|g\|_1\le \|f\|_1\|p_t\|_{\infty}\|g\|_1. \] The second statement follows because $\|p_t\|_{\infty} = (4\pi t)^{-d/2}$.