On the set $\O=[0,1)^2$ define
$$
\theta(x,y)=\left\{\begin{array}{cl}
(2x,y/2)&\mbox{if $x < 1/2$}\\
(2-2x,1-y/2)&\mbox{$x\geq1/2$}
\end{array}\right.
$$
Then the Lebesgue measure is invariant under $\theta$. The transformation $\theta$ is known as
Baker's Transformation
\begin{eqnarray*}
\l(\{(x,y):\theta(x,y)\in[0,s)\times[0,t)\})
&=&\l(x\leq s/2,y\leq 2t\wedge1)+\l(x\geq1-s/2,y\geq2-2t)\\
&=&\tfrac12s(2t\wedge1+(1-(2-2t)\wedge1)
\end{eqnarray*}
Both for $t\leq1/2$ and for $t > 1/2$ this gives: $st$