For real numbers $x_1,\ldots,x_k\geq1$ put
$$
\la x_1\ra\colon=\frac1{x_1}
\quad\mbox{and}\quad
\la x_1,\ldots,x_{k+1}\ra=\frac1{x_1+\la x_2,\ldots,x_{k+1}\ra}~.
$$
In particular:
$$
\la x_1,x_2\ra=\frac1{x_1+\frac1{x_2}},
\la x_1,x_2,x_3\ra=\frac1{x_1+\frac1{x_2+\frac1{x_3}}},\ldots
$$
Provided $\theta^k(x)\neq 0$ define for $x\in(0,1)$: $a_1,a_2,\ldots:[0,1)\rar\N$ by
$$
a_1(x)\colon=[1/x],\quad
a_{k+1}(x)\colon=[1/\theta^k(x)]~.
$$
The sequence $a_1(x),a_2(x),\ldots$ is called the
continued fraction of $x$. Verify the following statements:
- For all $x\in[0,1)$ and all $k\in\N$ such that $x,\theta(x),\ldots,\theta^{k-1}(x)\neq0$:
$$
x=\la a_1(x),\ldots,a_k(x)+\theta^k(x)\ra
\quad\mbox{and}\quad
\theta(x)=\la a_2(x),\ldots,a_k(x)+\theta^k(x)\ra~.
$$
- For $n_1,\ldots,n_k\in\N$ and $t\in(0,1)$:
$$
\theta(\la n_1,\ldots,n_k+t\ra)=\la n_2,\ldots,n_k+t\ra~.
$$
- Put $I=[0,1)\sm\Q$. For all $k\in\N$ we have $\theta^k(I)\sbe I$. Hence the functions $a_k:I\rar\N$ are defined for all $k\in\N$.
- For all $x\in[0,1)\cap\Q$ there is some $k\in\N$ such that $\theta^k(x)=0$.
1. For $k=1$ we have $\la a_1(x)+\theta(x)\ra=\la1/x\ra=x$. Suppose we have: $x=\la a_1(x),\ldots,a_k(x)+\theta^k(x)\ra$, then it follows from $a_n(\theta(x))=a_{n+1}(x)$:
$$
\theta(x)
=\la a_1(\theta(x)),\ldots,a_k(\theta(x))+\theta^{k+1}(x)\ra
=\la a_2(x),\ldots,a_{k+1}(x)+\theta^{k+1}(x)\ra~.
$$
Now $1/x=a_1(x)+\theta(x)$ and therefore:
$$
1/x
=a_1(x)+\la a_2(x),\ldots,a_{k+1}(x)+\theta^{k+1}(x)\ra
\quad\mbox{i.e.}\quad
x=\la a_1(x),\ldots,a_{k+1}(x)+\theta^{k+1}(x)\ra~.
$$
2. If $x=\la n_1,\ldots,n_k+t\ra$, then $1/x=n_1+\la n_2,\ldots,n_k+t\ra$ and thus
$\theta(x)=\la n_2,\ldots,n_k+t\ra$.