Suppose $\theta$ is measurable and $A\in\F$ satisfies $\mu(\theta^{-1}(A)\D A)=0$. Then there is a subset $B$ in the $\mu$-completion $\F^\mu$ of $\F$ such that $\mu(A\D B)=0$ and $\theta^{-1}(B)=B$.
We have: $\mu(\theta^{-n-1}(A)\D\theta^{-n}(A))=0$ and $\mu(\theta^{-n}(A)\D\theta^{-m}(A))=0$. Put $$ A_{max}\colon=\bigcup_{n=0}^\infty\theta^{-n}(A) \quad\mbox{and}\quad A_{min}\colon=\bigcap_{n=0}^\infty\theta^{-n}(A)~. $$ Then $A_{min}\sbe A\sbe A_{max}$ and $\theta^{-1}(A_{max})\sbe A_{max}$ and $\theta^{-1}(A_{min})\spe A_{min}$. Moreover $$ \mu(A_{max}\sm A_{min}) =\mu\Big(\bigcup_n\theta^{-n}(A)\cap\bigcup_m\theta^{-m}(A^c)\Big) \leq\sum_{n,m}\mu(\theta^{-n}(A)\D\theta^{-m}(A)) =0~. $$ Now define $$ {\cal C}\colon=\{C\sbe\O:A_{min}\sbe C\sbe A_{max},\theta^{-1}(C)\spe C\} $$ and put $B\colon=\bigcup\{C:C\in{\cal C}\}$. We obviously have $$ \theta^{-1}(B) =\bigcup\{\theta^{-1}C:C\in{\cal C}\} \spe\bigcup\{C:C\in{\cal C}\} =B~. $$ On the other hand we get for all $C\in{\cal C}$: $$ A_{min} \sbe\theta^{-1}(A_{min}) \sbe\theta^{-1}(C),\quad A_{max} \spe\theta^{-1}(A_{max}) \spe\theta^{-1}(C) $$ and $\theta^{-1}\theta^{-1}(C)\spe\theta^{-1}(C)$, i.e. $\theta^{-1}(C)\in{\cal C}$.