Suppose $\theta$ is a measure preserving map on the probability space $(\O,\F,\P)$. Then for all $A\in\F$: $$ \limsup_n\P(A\cap[\theta^n\in A])\geq\P(A)^2~. $$
By Cauchy-Schwarz (or Jensen) we get: $$ \E\Big(\sum_{k=1}^{n}I_{\theta^k\in A}\Big)^2 \geq\Big(\sum_{k=1}^{n}\E I_{\theta^k\in A}\Big)^2 =n^2\P(A)^2~. $$ Now the left hand side can be written as \begin{eqnarray*} \sum_{j,k}\P(\theta^k\in A,\theta^j\in A) &=&\sum_k\P(\theta^k\in A)+2\sum_{j < k}\P(\theta^k\in A,\theta^j\in A)\\ &=&n\P(A)+2\sum_{j < k}\P(A\cap[\theta^{k-j}\in A])\\ &\leq&n\P(A)+2{n\choose2}\sup_{1\leq k\leq n}\P(A\cap[\theta^k\in A])~. \end{eqnarray*} Therefore we conclude that $$ 2{n\choose2}\sup_{1\leq k\leq n}\P(A\cap[\theta^k\in A]) \geq n^2\P(A)^2-n\P(A)~. $$ As $n$ goes to $\infty$ this implies: $$ \sup_{k}\P(A\cap[\theta^k\in A])\geq\P(A)^2 $$ Replacing $\theta$ with $\theta^n$: $$ \forall m\in\N:\quad \sup_{k}\P(A\cap[\theta^{kn}\in A])\geq\P(A)^2 $$ which implies the asserted inequality.