Let $\P$ be a probability measure on $\R^2$ with density $\r$ and $X,Y$ denote the projections $(x,y)\mapsto x$ and $(x,y)\mapsto y$ respectively. If $\int\r(x,y)\,dx > 0$, then for all measurable $f:\R^2\rar[0,\infty]$ :
$$
\E(f|Y=y)
=\frac{\int f(x,y)\r(x,y)\,dx}{\int\r(x,y)\,dx},
$$
where $\E(f|Y=y)\in\R$ is a convenient notation for the value of $\E(f|Y)\colon=\E(f|\s(Y))$
on the set $[Y=y]$. If $\P$ is the uniform distribution on $(a,b)\times(c,d)$, then
$$
\E(f|X=x)=\frac1{d-c}\int_c^d f(x,y)\,dy\quad\mbox{and}\quad
\E(f|Y=y)=\frac1{b-a}\int_a^b f(x,y)\,dx~.
$$
Define $h(y)$ by the right hand side of the above formula. Obviously $h(Y)$ is $\s(Y)$-measurable. Now for any $A\in\s(Y)$ there is some $B\in\B$, such that $A=[Y\in B]$ and therefore we get by the transformation theorem of measure theory:
\begin{eqnarray*}
\E(h(Y);A)
&=&\int_B\int_\R h(y)\r(x,y)\,dx\,dy\\
&=&\int_B\int_\R\Big(
\int f(z,y)\r(z,y)\,dz\Big/\int\r(z,y)\,dz\Big)\r(x,y)\,dx\,dy\\
&=&\int_B\int_\R f(z,y)\r(z,y)\,dz\,dy
=\E(f(X,Y)I_B(Y))
=\E(f(X,Y);A)~.
\end{eqnarray*}