Find a solution of the first order PDE $\pa_tu=y\pa_xu-x\pa_y$ on $M=\R^2$ satisfying $u(0,x,y)=x^2-y^2$.
Put $X=y\pa_x-x\pa_y$, then its flow $\theta(t,x,y)=\colon(x(t),y(t))$ is given by the ODE: $$ x^\prime(t)=y(t),\quad y^\prime(t)=-x(t) \quad\mbox{and}\quad x(0)=x, y(0)=y~. $$ Thus $x(t)=x\cos(t)+y\sin(t)$ and $y(t)=-x\sin(t)+y\cos(t)$, i.e. $$ \theta(t,x,y)=(x\cos(t)+y\sin(t),-x\sin(t)+y\cos(t)) $$ and $u(t,x,y)=P_tf(x,y)=f(\theta(t,x,y))$ for $f=x^2-y^2$, i.e. \begin{eqnarray*} u(t,x,y)&=&f(x\cos(t)+y\sin(t),-x\sin(t)+y\cos(t))\\ &=&(x\cos(t)+y\sin(t))^2-(-x\sin(t)+y\cos(t))^2\\ &=&(x^2-y^2)\cos(2t)+2xy\sin(2t)~. \end{eqnarray*}