If $H$ is a positive, self-adjoint operator on a finite dimensional Hilbert space (i.e. a euclidean space), then $P_t\colon=e^{-tH}$, $t\geq0$, is a continuous contraction semigroup. If $H$ is a self-adjoint operator on a finite dimensional Hilbert space, then $U_t\colon=e^{-itH}$, $t\in\R$, is a continuous group of isometries. 2. Prove that $$ \lim_{T\to\infty}\frac1T\int_0^T P_tx\,dt= \lim_{T\to\infty}\frac1T\int_0^T U_tx\,dt =\Prn_{\ker H}x~. $$
Suppose $0\leq\l_1\leq\cdots\leq\l_n$ are the eigen values of $H$ with orthonormal eigen vectors $x_1,\ldots,x_n$, then for all $x\in E$: $$ P_tx=\sum e^{-\l_jt}\la x,x_j\ra x_j \quad\mbox{and}\quad U_tx=\sum e^{-i\l_jt}\la x,x_j\ra x_j~. $$ Since $e^{-\l_jt}\leq1$ and $|e^{-i\l_jt}|=1$, $P_t$ is a self-adjoint contraction and $U_t$ is an isometry. We obviously have for all $P_sP_t=P_{s+t}$ and $U_sU_t=U_{s+t}$.
2. Suppose $x\in(\ker H)^\perp$, then $$ \frac1T\int_0^T P_tx\,dt =\sum_{\l_j > 0}\frac1T\int_0^Te^{-\l_jt}\la x,x_j\ra x_j\,dt =\sum_{\l_j > 0}\frac{1-e^{-\l_jT}}{\l_jT}\la x,x_j\ra x_j =0 $$ and for $x\in\ker H$: $$ \frac1T\int_0^T P_tx\,dt =\sum_{\l_j = 0}\la x,x_j\ra x_j =x~. $$