Define for $f\in L_1(\R^+)$ and $x\in E$: $T(f)x\colon=\int_0^\infty f(t)P_tx\,dt$. Then $T:L_1(\R^+)\rar L(X)$ and $\ker T$ is an ideal in the convolution algebra $L_1(\R^+)$.
By Fubini we conclude that for all $f\in\ker T$ and $g\in L_1(\R^+)$: \begin{eqnarray*} T(f*g)x &=&\int_0^\infty\int_0^tg(s)f(t-s)P_tx\,ds\,dt\\ &=&\int_0^\infty\int_s^\infty g(s)f(t-s)P_tx\,dt\,ds =\int_0^\infty g(s)P_s\int_0^\infty f(t)P_tx\,ds\,dt =0 \end{eqnarray*}