Prove directly the implication 5.$\Rar$2..
For $x\in\ker L$ we have: $P_tx=x$ and thus for all $\l > 0$: $$ \l\int_0^\infty P_txe^{-\l t}\,dt =x \quad\mbox{i.e.}\quad x\in F~. $$ For $x\in\im L$, i.e. $x=Ly$, $y\in\dom L$, we have: $$ \lim_{\l\to0}\tnorm{\l(\l-L)^{-1}x} =\lim_{\l\to0}\l\tnorm{\l(\l-L)^{-1}y-y} \leq\lim_{\l\to0}2\l\norm{y} =0~. $$ It follows that: $\ker L+\im L\sbe F$, i.e. $F=E$.