Suppose $I,J$ are compact intervals, $f:J\times I\rar E$ continuous, $u,v:J\rar I$ $C^1$ and $\pa_sf$ continuous. Then the function $$ F(s)=\int_{v(s)}^{u(s)}f(s,t)\,dt $$ is differentiable and $$ F^\prime(s)=f(s,u(s))u^\prime(s)-f(s,v(s))v^\prime(s) +\int_{v(s)}^{u(s)}\pa_sf(s,t)\,dt $$
Define $h:(u,v,s)\mapsto\int_v^u f(s,t)\,dt$, then $$ \pa_uh(u,v,s)=f(s,u),\quad \pa_vh=-f(s,v),\quad \pa_sh(u,v,s)=\int_v^u \pa_tf(s,t)\,dt $$ and thus $h$ is $C^1$. Since $F(s)=h(u(s),v(s),s)$, we get $$ F^\prime(s) =\pa_uh(u(s),v(s),s)u^\prime(s)+\pa_vh(u(s),v(s),s)v^\prime(s)+\pa_sh(u(s),v(s),s) $$