Suppose $f\in L_1([0,1])$ and $\int_0^1 f\leq C$. Then thera are pairwise disjoint intervals $(a_j,b_j)$ such that $$ \frac1{b_j-a_j}\int_{a_j}^{b_j}f(t)\,dt=C \quad\mbox{and}\quad \forall t\notin\bigcup(a_j,b_j):\quad\frac1t\int_0^tf(s)\,ds\leq C~. $$
Put $g(t)\colon=\int_0^t f(s)-C\,ds$; then $g(a_j)=g(b_j)$ means: $$ \int_{a_j}^{b_j} f(s)\,ds=C(b_j-a_j) $$ and for $t\notin U(g)$: for all $s > t$: $g(t)\leq g(s)$ and in particular for $s=1$: $g(t)\leq g(1)$, i.e. $\int_0^t f(s)\,ds\leq tC$.