For any $a > 0$ take $\vp(t)=(t-a)^+$. What inequality can be deduced? Find an optimal value for $a$ and show that $$ \Big(\Big(\int f^*\,d\mu\Big)^{1/2}-\sqrt{\mu(S)/e}\Big)^2 \leq\int f\log^+f\,d\mu+\mu(S)/e~. $$
$\vp^\prime=I_{(a,\infty)}$: $\Phi(t)=\log^+(t/a)$ $$ \int f^*\,d\mu \leq\int(f^*-a)^+\,d\mu+a\mu(S) \leq\int\log^+(f^*/a)f\,d\mu+a\mu(S) \leq\int f\log^+f+(ae)^{-1}f^*\,d\mu+a\mu(S) $$ Now $\inf_{a > 0}A/a+aB=2\sqrt{AB}$ and thus for $I\colon=\int f^*\,d\mu$ and $A=I/e$, $B=\mu(S)$: $$ (\sqrt I-\sqrt{\mu(S)/e})^2 =I-2\sqrt{I\mu(S)/e}+\mu(S)/e \leq\int f\log^+f\,d\mu+\mu(S)/e $$ It follows that $$ I\leq\Big(\sqrt{\int f\log^+f\,d\mu+\mu(S)/e}+\sqrt{\mu(S)/e}\Big)^2 \leq2\int f\log^+f\,d\mu+4\mu(S)/e~. $$