For any a>0 take φ(t)=(ta)+. What inequality can be deduced? Find an optimal value for a and show that ((fdμ)1/2μ(S)/e)2flog+fdμ+μ(S)/e .
φ=I(a,): Φ(t)=log+(t/a) fdμ(fa)+dμ+aμ(S)log+(f/a)fdμ+aμ(S)flog+f+(ae)1fdμ+aμ(S) Now infa>0A/a+aB=2AB and thus for I:=fdμ and A=I/e, B=μ(S): (Iμ(S)/e)2=I2Iμ(S)/e+μ(S)/eflog+fdμ+μ(S)/e It follows that I(flog+fdμ+μ(S)/e+μ(S)/e)22flog+fdμ+4μ(S)/e .