For any
a
>
0
take
φ
(
t
)
=
(
t
−
a
)
+
. What inequality can be deduced? Find an optimal value for
a
and show that
(
(
∫
f
∗
d
μ
)
1
/
2
−
μ
(
S
)
/
e
)
2
≤
∫
f
log
+
f
d
μ
+
μ
(
S
)
/
e
.
φ
′
=
I
(
a
,
∞
)
:
Φ
(
t
)
=
log
+
(
t
/
a
)
∫
f
∗
d
μ
≤
∫
(
f
∗
−
a
)
+
d
μ
+
a
μ
(
S
)
≤
∫
log
+
(
f
∗
/
a
)
f
d
μ
+
a
μ
(
S
)
≤
∫
f
log
+
f
+
(
a
e
)
−
1
f
∗
d
μ
+
a
μ
(
S
)
Now
inf
a
>
0
A
/
a
+
a
B
=
2
A
B
and thus for
I
:
=
∫
f
∗
d
μ
and
A
=
I
/
e
,
B
=
μ
(
S
)
:
(
I
−
μ
(
S
)
/
e
)
2
=
I
−
2
I
μ
(
S
)
/
e
+
μ
(
S
)
/
e
≤
∫
f
log
+
f
d
μ
+
μ
(
S
)
/
e
It follows that
I
≤
(
∫
f
log
+
f
d
μ
+
μ
(
S
)
/
e
+
μ
(
S
)
/
e
)
2
≤
2
∫
f
log
+
f
d
μ
+
4
μ
(
S
)
/
e
.