For $p\in(0,2)$ let $X$ be a symmetric r.v. with distribution $\P(|X| > x)=\min\{1,x^{-p}\}$. If $X_1,\ldots,X_n$ denote independent copies of $X$ then the r.v. $$ S_n\colon=\frac1{n^p}\sum_{j=1}^nX_j $$ converge in distribution to a symmetric $p$-stable r.v. with parameter $$ \s_p^p=2\int_0^\infty\frac{1-\cos(u)}{u^{1+p}}\,dx~. $$
The characteristic function $\vp_X(t)$ of $X$ is given by $$ 1-\p_X(t) =p\int_1^\infty\frac{1-\cos(tx)}{x^{1+p}}\,dx =pt^p\int_t^\infty\frac{1-\cos(u)}{u^{1+p}}\,du~. $$ As $t\to0$ we get $\vp_X(t)\sim1-C_p t^p$ where $$ C_p=p\int_0^\infty\frac{1-\cos(u)}{u^{1+p}}\,dx~. $$ Hence we get for the characteristic function $\vp_n$ of $S_n$: \begin{eqnarray*} \vp_n(t) &=&\E\exp(itS_n) =(\E\exp(itn^{-1/p}X)^n\\ &=&\vp_X(tn^{-1/p}) =(1-(1-\vp_X(tn^{-1/p})))^n \stackrel{n\to\infty}{\longrar}\exp(-C_p|t|^p)~. \end{eqnarray*}