If P:EE is a linear contraction, then en(P1)xPnxn(P1)x
Let Nt be a Poisson process with parameter λ=1. As ENt=t and ENt2=t2+t we infer that: en(P1)xPnxEPNnxPnxE|Nnn|Pxx(E(Nn2+n22nNn))12Pxx=nPxx .