If $P:E\rar E$ is a linear contraction, then $$ \norm{e^{n(P-1)}x-P^nx}\leq\sqrt n\norm{(P-1)x} $$
Let $N_t$ be a Poisson process with parameter $\l=1$. As $\E N_t=t$ and $\E N_t^2=t^2+t$ we infer that: \begin{eqnarray*} \tnorm{e^{n(P-1)}x-P^nx} &\leq&\E\tnorm{P^{N_n}x-P^nx} \leq\E|N_n-n|\norm{Px-x}\\ &\leq&(\E(N_n^2+n^2-2n N_n))^{\frac12}\norm{Px-x} =\sqrt n\norm{Px-x}~. \end{eqnarray*}