If
P
:
E
→
E
is a linear contraction, then
‖
e
n
(
P
−
1
)
x
−
P
n
x
‖
≤
n
‖
(
P
−
1
)
x
‖
Let
N
t
be a Poisson process with parameter
λ
=
1
. As
E
N
t
=
t
and
E
N
t
2
=
t
2
+
t
we infer that:
‖
e
n
(
P
−
1
)
x
−
P
n
x
‖
≤
E
‖
P
N
n
x
−
P
n
x
‖
≤
E
|
N
n
−
n
|
‖
P
x
−
x
‖
≤
(
E
(
N
n
2
+
n
2
−
2
n
N
n
)
)
1
2
‖
P
x
−
x
‖
=
n
‖
P
x
−
x
‖
.