Suppose $X_n$ is a Markov chain in $S$, then for $t > 0$ the function $h(x)=\E^x e^{tH_A}$ (provided it exists) solves for all $x\notin A$ the equation: $Ph(x)=e^{-t}h(x)$. 2. If $X_n$ is the simple random walk on $\Z$, $A=\{x\in\Z:|x|\geq p\}$, then for all $|x| < p$: $h(x+1)+h(x-1)=2e^{-t}h(x)$ and $h(\pm p)=1$. 3. Put $\cos\vp=e^{-t}$ and $\sin\vp=(1-e^{-2t})^{1/2}$, then $$ \forall |x| < p:\quad h(x)=\frac{\cos(\vp x)}{\cos(\vp p)} $$ provided that $\vp p < \pi/2$, i.e. $t < -\log\cos(\pi/2p)$.
On the set $[H_A\geq1]$ we have $H_A=H_A\circ\Theta+1$ and thus \begin{eqnarray*} h(x) &=&\E^x(e^{tH_A};H_A\geq1)+\P^x(H_A=0)\\ &=&\E^x(\E^xe^{t+tH_A\circ\Theta}|\F_1);X_0\notin A)+\P^x(X_0\in A)\\ &=&e^t\E^x(\E^xe^{tH_A\circ\Theta}|\F_1);X_0\notin A)+\P^x(X_0\in A)\\ &=&e^t\E^x(\E^{X_1}e^{tH_A};X_0\notin A)+\P^x(X_0\in A)\\ &=&e^t\E^x(h(X_1);X_0\notin A)+\P^x(X_0\in A)~. \end{eqnarray*} Hence if $x\notin A$: $Ph(x)=e^{-t}h(x)$. If $x\in A$ then both sides equal $1$.
2. In this case it follows that $$ \forall |x| < p:\quad h(x+1)+h(x-1)=2e^{-t}h(x) \quad\mbox{and}\quad h(\pm p)=1~. $$ 3. This homogeneous difference equation has the general solution $$ h(x)=ae^{i\vp x}+be^{-i\vp x} $$ for $a,b\in\C$. Now $h(\pm p)=1$ implies $$ 1=ae^{i\vp p}+be^{-i\vp p}, 1=ae^{-i\vp p}+be^{i\vp p}~. $$ Solving for $a$ and $b$ we get: $$ a=b=\frac{\sin(\vp p)}{\sin(2\vp p)}=\frac{1}{2\cos(\vp p)}~. $$ Hence $$ h(x)=\frac{\cos(\vp x)}{\cos(\vp p)}~. $$ Now $\vp < \pi/2p$ i.e. $e^{-t}=\cos\vp > \cos(\pi/2p)$, i.e. $$ t < \log\frac1{\cos(\pi/2p)}~. $$