Compute un for the simple random walk on Z2p for A={p} and p=3.
Deleting both the row and the column corresponding to state p we get the transition matrix of a random walk Yn on Z2p1={(p1),,p1}. Hence 12(0100010100010100010100010) . The eigen values are: 1/2,0,1/2,3/2,3/2 and an orthonormal set of eigen vectors is: v1=12(1,1,0,1,1)v2=12(1,0,1,0,1)v3=12(1,1,0,1,1)v4=112(1,3,2,3,1)v5=112(1,3,2,3,1) Now u1=u1,v2v2+u1,v4v4+u1,evv5=14v2+112v4+112v5 and thus un+1=Qnu1=112((3/2)nv4+(3/2)nv5)=112((3/2)n(1,3,2,3,1)+(3/2)n(1,3,2,3,1)) . in particular u2m+1(0)=13(3/4)m.
For arbitrary p an eigen vector v=(v1,,v2p1) is of the form: vk=Aeitk+Beitk. The recursion: vk1+vk+1=λvk gives: λ=2cos(t). The boundary conditions v2=λv1 and v2p2=λv2p1 imply that Ae2it+Be2it=(eit+eit)(Aeit+Beit) i.e. B=A and eit(2p1)iteit(2p1)+it=(eit+eit)(eit(2p1)eit(2p1)) i.e. sin(2pt)=0, t=kπ/(2p), k=1,,2p1. Thus the eigen values are 2cosjπ2p,j=1,,2p1 . and the eigen vectors vj:=(sinjπ2p,sin2jπ2p,,sin(2p1)jπ2p) .