Suppose $(S_i,\F_i,\mu_i)$, $i=1,2$, are measure spaces. If $f:S_1\rar L_1(S_2,\mu_2)$ is integrable, then there is some function $F\in L_1(S_1\times S_2,\mu_1\otimes\mu_2)$, such that
- For $\mu_1$ almost all $x_1$: $F_{x_1}=f(x_1)$.
- For $\mu_2$ almost all $x_2$: $F_{x_2}$.
Put $E\colon=L_1(\O_1,\F_1,\mu_1,L_1(\mu_2))$. If $f$ is simple, then
$$
F=\sum_{j=1}^n g_jI_{A_j}
\quad\mbox{where}\quad
g_j\in L_1(\mu_2),
$$
Now define
$$
F(x_1,x_2)\colon=\sum_{j=1}^n g_j(x_2)I_{A_j}(x_1)~.
$$
We have: $F_{x_1}=f$ and $\int F_{x_2}\,d\mu_1=(\int f\,d\mu_1)(x_2)$.