Verify that $A\mapsto\det(A)$ is a quadratic form on $\Ma(2,\R)$. Verify that the associated symmetric bi-linear map $g:\Ma(2,\R)\times\Ma(2,\R)\rar\R$, $g(A,A)=\det(A)$ is an inner product and compute its index.
For $x_1,x_2,x_3,x_4\in\R$ and $$ A=\left(\begin{array}{cc} x_1&x_2\\ x_3&x_4 \end{array}\right) \quad\mbox{we have}\quad \det(A)=x_1x_4-x_2x_3 $$ and thus we need to find the eigen values and multiplicities of the matrix $$ \frac12\left(\begin{array}{cccc} 0&0&0&1\\ 0&0&-1&0\\ 0&-1&0&0\\ 1&0&0&0 \end{array}\right) $$ The maxima commands
A:matrix([0,0,0,1],[0,0,-1,0],[0,-1,0,0],[1,0,0,0]);
eigenvalues(A);
show that the above matrix has eigen values $\pm1/2$ each with multiplicity $2$, i.e. $g$ is an inner product with index $2$.