If $E=F\oplus G$ and $u\in\Hom(E)$ satisfies: $u(F)\sbe F$ and $u(G)\sbe G$, then $\det u=\det(u|F)\det(u|G)$.
Let $f_1,\ldots,f_k$ and $g_1,\ldots,g_m$ be bases for $F$ and $G$ respectively and choose a volume form on $E$ such that $\vol{}(f_1,\ldots,g_m)=1$, then $$ \o:(x_1,\ldots,x_k)\mapsto\vol{}(x_1,\ldots,x_k,g_1,\ldots,g_m) $$ is a volume form on $F$ and therefore: \begin{eqnarray*} \vol{}(u(f_1),\ldots,u(f_k),g_1,\ldots,g_m) &=&\o(u(f_1),\ldots,u(f_k))\\ &=&\det(u|F)\o(f_1,\ldots,f_k)\\ &=&\det(u|F)\vol{}(f_1,\ldots,g_m) =\det(u|F)~. \end{eqnarray*} Now $\eta:(y_1,\ldots,y_m)\mapsto\vol{}(u(f_1),\ldots,u(f_k),y_1,\ldots,y_m)$ is a volume form on $G$, which implies: \begin{eqnarray*} \vol{}(u(f_1),\ldots,u(f_k),u(g_1),\ldots,u(g_m)) &=&\eta(u(g_1),\ldots,u(g_m))\\ &=&\det(u|G)\eta(g_1,\ldots,g_m)\\ &=&\det(u|G)\vol{}(u(f_1),\ldots,u(f_k),g_1,\ldots,g_m) =\det(u|G)\det(u|F)~. \end{eqnarray*} On the other hand the left hand side equals by definition $\det(u)$.