The space $E$ of all complex hermitian $2\times2$ matrices is the space of all matrices $$ \left( \begin{array}{cc} x_0& x_2-ix_3\\ x_2+ix_3&x_1 \end{array}\right) \quad x_0,x_1,x_2,x_3\in\R~. $$ 1. Verify that $E$ has real dimension four and $A\mapsto-\det(A)$ is a quadratic form on $E$. Thus there is a unique bi-linear form $g$ on $E\times E$ such that $g(A,A)=-\det(A)$. 2. Show that $g$ is a Lorentz product. 3. The subspace $F\colon=\{A\in E:\tr A=0\}$ is space-like and the identity is a time-like vector.
2. $-\det A=-x_0x_1+x_2^2+x_3^2$, thus the symmetric bi-linear map is given by $$ (x_0,x_1,x_2,x_3),(y_0,y_1,y_2,y_3) \mapsto-\tfrac12(x_0y_1+x_1y_0)+x_2y_2+x_3y_3 $$ with Gramian (of the canonical basis): $$ \left(\begin{array}{cccc} 0&-\frac12&0&0\\ -\frac12&0&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{array}\right)~. $$ It's eigenvalues are $-1/2,1/2,1,1$, i.e. $g$ is a Lorentz product. The normalized (with respect to $g$) eigen vectors are given by: $$ \s_0=\left( \begin{array}{cc} 1&0\\ 0&1 \end{array}\right), \s_3=\left( \begin{array}{cc} 1&0\\ 0&-1 \end{array}\right), \s_1=\left( \begin{array}{cc} 0&1\\ 1&0 \end{array}\right), \s_2=\left( \begin{array}{cc} 0&-i\\ i&0 \end{array}\right)~. $$ The matrices $\s_1,\s_2$ and $\s_3$ are called the Pauli spin matrices.
3. For $\tr A=0$ we have $g(A,A)=-\det(A)=x_1^2+x_2^2+x_3^2$, i.e. $g$ is euclidean on $F$.
4. A vector $A\colon=x_0\s_0+x_1\s_3+x_2\s_1+x_3\s_2$ is time-like iff $\det A > 0$ and for $A=1$ we have $\det A=1$.
5. For all $A$ in $F$ we have $$ g(A,\s_0)=-\tfrac12(x_0+x_1)=-\tfrac12\tr A=0~. $$