Suppose $(E,\la.,.\ra)$ is euclidean and $z\in E$ a unit vector. Then $$ g(x,y)\colon=\la x,y\ra-2\la x,z\ra\la y,z\ra $$ is a Lorentz product on $E$. 2. Conversely if $(E,\la.,.\ra)$ is a Lorentz space and $z\in E$ a time-like unit vector, then $$ g(x,y)\colon=\la x,y\ra+2\la x,z\ra\la y,z\ra $$ is a euclidean product on $E$ and for all $x,y\in E$ we have: $$ |\la x,y\ra|\leq3|x||y| \quad\mbox{where}\quad |x|^2\colon=g(x,x)~. $$
2. Put $x=-\la x,z\ra z+u$ for some $u\in z^\perp$, then $$ g(x,x) =\la x,x\ra+2\la x,z\ra^2 =-\la x,z\ra^2+\Vert u\Vert^2+2\la x,z\ra^2 =\la x,z\ra^2+\Vert u\Vert^2 $$ and this equals $0$ iff $u=0$ and $\la x,z\ra=0$, i.e. $x=0$ and thus $g$ is a euclidean product. Since $g(x,z)=-\la x,z\ra$ and $|z|^2=g(z,z)=1$ we get by Cauchy-Schwarz: \begin{eqnarray*} |\la x,y\ra| &\leq&|g(x,y)|+2|\la x,z\ra\la y,z\ra|\\ &=&|g(x,y)|+2|g(x,z)g(y,z)| \leq|x||y|+2|x||y||z|^2 \leq3|x||y|~. \end{eqnarray*}