Let $c:[a,b]\rar M$ be a smooth curve in the Minkowski space $M$ such that for all $t\in[a,b]$: $c^\prime(t)$ is time-like and future pointing. Then $$ T(c)\colon=\int_a^b\Vert c^\prime(t)\Vert\,dt $$ is the proper time of the curve. Show that for any smooth curve $c:[0,1]\rar M$ such that $c^\prime(t)$ is time-like and future pointing and $c(0)=0$ and $c(1)=(1,0,\ldots,0)$: $T(c)\leq1$.
Since $c$ is time-like and future pointing, we have for all $t$: $\la c^\prime(t),E^0\ra < 0$ and $$ c^\prime(t)=-\la c^\prime(t),E^0\ra E^0+k(t) $$ where $k(t)\perp E^0$, i.e. $k(t)$ is a space-like vector and thus $$ \tnorm{c^\prime} =\sqrt{-\la c^\prime,c^\prime\ra} =\sqrt{\la c^\prime,E^0\ra^2-\la k,k\ra}~. $$ Since $\la c^\prime,E^0\ra\leq0$ and $\la k,k\ra\geq0$, we obtain: \begin{eqnarray*} T(c) &=&\int_0^1\tnorm{c^\prime(t)}\,dt =\int_0^1\sqrt{\la c^\prime(t),E^0\ra^2-\la k(t),k(t)\ra}\,dt\\ &\leq&\int_0^1\sqrt{\la c^\prime(t),E^0\ra^2}\,dt =\int_0^1-\la c^\prime(t),E^0\ra\,dt\\ &=&\int_0^1 c_0^\prime(t)\,dt =c_0(1)-c_0(0) =1~. \end{eqnarray*}