Describe all Lorentz transformations in $\R_1^3$.
Let $b_1$ be a unit vector in $e_0^\perp$, i.e. $b_1=\cos(\a)e_1+\sin(\a)e_2$ and $b_2=-\sin(\a)e_1+\cos(\a)e_2$ and assume $$ u(e_0)=\cosh(\vp)e_0+\sinh(\vp)b_1 $$ Put $v(e_0)=\cosh(\vp)e_0-\sinh(\vp)b_1$, $v(b_1)=-\sinh(\vp)e_0+\cosh(\vp)b_1$ and $v(b_2)=b_2$. Then $u=v^{-1}r$ for some rotation $r$ in $e_0^\perp$. The matrix $V^{-1}$ of $v^{-1}$ with respect to the basis $e_0,b_1,b_2$: $$ \left( \begin{array}{ccc} \cosh(\vp)&\sinh(\vp)&0\\ \sinh(\vp)&\cosh(\vp)&0\\ 0&0&1 \end{array} \right)~. $$ The matrix $U$ of the basis $e_0,b_1,b_2$ with respect to the basis $e_0,e_1,e_2$: $$ \left( \begin{array}{ccc} 1&0&0\\ 0&\cos(\a)&-\sin(\a)\\ 0&\sin(\a)&\cos(\a) \end{array} \right)~. $$ Finally the matrix $R$ of $r$ with respect to the basis $e_0,b_1,b_2$: $$ \left( \begin{array}{ccc} 1&0&0\\ 0&\cos(\psi)&-\sin(\psi)\\ 0&\sin(\psi)&\cos(\psi) \end{array} \right)~. $$ Thus the matrix of $u=v^{-1}r$ with respect to the basis $e_0,e_1,e_2$ is given by $$ U^{-1}v^{-1}UU^{-1}RU=U^{-1}v^{-1}RU $$ i.e. $$ \left( \begin{array}{ccc} 1&0&0\\ 0&\cos(\a)&\sin(\a)\\ 0&-\sin(\a)&\cos(\a) \end{array} \right) \left( \begin{array}{ccc} \cosh(\vp)&\sinh(\vp)&0\\ \sinh(\vp)&\cosh(\vp)&0\\ 0&0&1 \end{array} \right) \left( \begin{array}{ccc} 1&0&0\\ 0&\cos(\psi)&-\sin(\psi)\\ 0&\sin(\psi)&\cos(\psi) \end{array} \right) \left( \begin{array}{ccc} 1&0&0\\ 0&\cos(\a)&-\sin(\a)\\ 0&\sin(\a)&\cos(\a) \end{array} \right)~. $$ For $\psi=0$ we get the matrix of an arbitrary boost in $\R_1^3$: $$ \left( \begin{array}{ccc} \cosh(\vp)&\cos(\a)\sinh(\vp)&-\sin(\a)\sinh(\vp)\\ \cos(\a)\sinh(\vp)&\sin^2(\a)+\cos^2(\a)\cosh(\vp)&\sin(\a)\cos(\a)(1-\cosh(\vp))\\ -\sin(\a)\sinh(\vp)&\sin(\a)\cos(\a)(1-\cosh(\vp))&\cos^2(\a)+\sin^2(\a)\cosh(\vp) \end{array} \right)~. $$