Prove that the mapping $F(r,\vp,\theta)=(r\cos\vp\cos\theta,r\sin\vp\cos\theta,r\sin\theta)$ is not a conformal mapping from $\R^+\times(-\pi,\pi)\times(-\pi/2,\pi/2)$ into $\R^3$.
Since $$ DF(r,\vp,\theta) =\left(\begin{array}{ccc} \cos\vp\cos\theta&-r\sin\vp\cos\theta&-r\cos\vp\sin\theta\\ \sin\vp\cos\theta&r\cos\vp\cos\theta&-r\sin\vp\sin\theta\\ \sin\theta&0&r\cos\theta \end{array}\right) $$ we get $$ DF(r,\vp,\theta)^*DF(r,\vp,\theta) =\left(\begin{array}{ccc} 1&0&0\\ 0&r^2\cos^2\theta&0\\ 0&0&r^2 \end{array}\right) $$ which evidently is not of the form $$ h(r,\vp,\theta)^2 \left(\begin{array}{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}\right) $$ and thus $F$ is not conformal.