Suppose $|v| < 1$ and $\Vert z\Vert=1$. Is the classical aberration map $F_c:S^n\rar S^n$, $$ x\mapsto\frac{x-vz}{\Vert x-vz\Vert} $$ a conformal transformation of $S^n$? 2. Compute the inverse of $F_c$.
$F_c$ is the composition of the translation $T(x)=x-vz$ and the map $G(y)=y/\Vert y\Vert$. Since $$ DG(y)u =\frac u{\Vert y\Vert}-\frac{y\la y,u\ra}{\Vert y\Vert^3} =\frac1{\Vert y\Vert}\Big(u-\frac{\la y,u\ra}{\Vert y\Vert^2}\,y\Big) $$ and $DT(x)u=u$ we get by the chain rule: $$ DF_c(x)u =DG(T(x))DT(x)u =DG(x-vz)u =\frac1{\Vert x-vz\Vert}\Big(u-\frac{\la x-vz,u\ra}{\Vert x-vz\Vert^2}\,(x-vz)\Big) $$ In particular for $x\in S^n$ and $u\perp x$: $$ DF_c(x)u =\frac1{\Vert x-vz\Vert}\Big(u+\frac{\la vz,u\ra}{\Vert x-vz\Vert^2}\,(x-vz)\Big) $$ This implies that: \begin{eqnarray*} \Vert x-vz\Vert^2\la DF_c(x)u,DF_c(x)u\ra &=&\Vert u\Vert^2 +\frac{\la vz,u\ra^2}{\Vert x-vz\Vert^4}\Vert x-vz\Vert^2 +2\frac{\la vz,u\ra}{\Vert x-vz\Vert^2}\la u,x-vz\ra\\ &=&\Vert u\Vert^2 +\frac{\la vz,u\ra^2}{\Vert x-vz\Vert^2} -2\frac{\la vz,u\ra^2}{\Vert x-vz\Vert^2}\\ &=&\Vert u\Vert^2 -\frac{\la vz,u\ra^2}{\Vert x-vz\Vert^2}~. \end{eqnarray*} Thus $F_c:S^n\rar S^n$ is not conformal.
2. As for the inverse we need to solve the equation $$ \frac{x-vz}{\Vert x-vz\Vert}=y $$ for given $y\in S^n$. Now $x=y\Vert x-vz\Vert+vz$ and since $x\in S^n$: $$ \Vert x-vz\Vert^2+2v\la z,y\ra\Vert x-vz\Vert-1+v^2=0~. $$ Solving for $\Vert x-vz\Vert$ we get $$ \Vert x-vz\Vert=-v\la z,y\ra+\sqrt{v^2\la z,y\ra^2+1-v^2} $$ It follows that $$ x=y\Big(-v\la z,y\ra+\sqrt{v^2\la z,y\ra^2+1-v^2}\Big)+vz $$