Let $\vp_N:S^n\sm\{N\}\rar\R^n$ be the stereographic projection, $y\in S^n$, $y_{n+1}\neq0$ and $H\colon=\{z\in S^{n+1}:\la z,y\ra=0\}$. Verify that $\vp_N(H)$ is the sphere $$ \{x\in\R^n:\,\sum(x_j+\tfrac{y_j}{y_{n+1}})^2 =\tfrac1{y_{n+1}^2}\} $$
Let $\psi$ be the inverse of $\vp_N$, then $$ z=\psi(x)=\left( \frac{2x_1}{1+\norm x^2},\ldots,\tfrac{2x_n}{1+\norm x^2}, \frac{\norm x^2-1}{1+\norm x^2}\right)~. $$ As $\la z,y\ra=0$ we infer that: \begin{eqnarray*} 0&=&\sum_j\frac{2x_jy_j}{1+\norm x^2} +\frac{(\norm x^2-1)y_{n+1}}{1+\norm x^2}\\ &=&\frac{y_{n+1}}{1+\norm x^2} \left(\sum(x_j+\frac{y_j}{y_{n+1}})^2 -1-\sum\frac{y_j^2}{y_{n+1}^2}\right)\\ &=&\frac{y_{n+1}}{1+\norm x^2} \left(\sum(x_j+\frac{y_j}{y_{n+1}})^2 -\frac1{y_{n+1}^2}\right)~. \end{eqnarray*}