Prove that the linear map $X_m\mapsto(X_m\contract\O_m)^\sharp$ is skew symmetric, i.e. for all $X_m,Y_m\in T_mM$: $\la(X_m\contract\O_m)^\sharp,Y_m\ra=-\la X_m,(Y_m\contract\O_m)^\sharp\ra$. 2. If $Z_m\in T_mM$ is an instantaneous observer minimizing $X_m\mapsto\norm{X_m\contract\O_m)^\sharp}^2$, then $Z_m$ is an eigen-vector of $$ X\mapsto((X\contract\O)^\sharp\contract\O)^\sharp~. $$
1. What is the adjoint of $Z\mapsto(Z\contract\O)^\sharp$? $$ \la(Z\contract\O)^\sharp,W\ra =\O(Z,W) =-\O(W,Z) =-\la Z,(W\contract\O)^\sharp\ra $$ Thus the adjoint is $W\mapsto-(W\contract\O)^\sharp$.
2. Suppose a time-like unit vector $Z$ minimizes $\la Z\contract\O,Z\contract\O\ra$. With Lagrange multiplier $\l$ we get the functional: $$ Z\mapsto\la Z\contract\O,Z\contract\O\ra-\l(\la Z,Z\ra+1) $$ Thus for all $N\in T_mM$: $$ \la N\contract\O,Z\contract\O\ra-\l\la Z,N\ra=0, \la Z,Z\ra=-1 $$ By the first part we have $$ \la N\contract\O,Z\contract\O\ra =-\la N,(Z\contract\O)^\sharp\contract\O\ra $$ and therefore $$ -((Z\contract\O)^\sharp\contract\O)^\sharp=\l Z $$