Suppose we are given a square block matrix $A\in\Ma(n,\R)$: $$ A=\left(\begin{array}{cc} A_{11}&A_{12}\\ A_{21}&A_{22} \end{array}\right), $$ $A_{11}\in\Ma(l,\R)$, $A_{22}\in\Ma(m,\R)$, $l+m=n$. Assuming $A_{11}$ to be invertible, we get $$ \left(\begin{array}{cc} 1&0\\ -A_{21}A_{11}^{-1}&1 \end{array}\right) \left(\begin{array}{cc} A_{11}&A_{12}\\ A_{21}&A_{22} \end{array}\right) \left(\begin{array}{cc} 1&-A_{11}^{-1}A_{12}\\ 0&1 \end{array}\right) =\left(\begin{array}{cc} A_{11}&0\\ 0&A_{22}-A_{21}A_{11}^{-1}A_{12} \end{array}\right) $$
$T_xT:T_xM\rar T_{T(x)}M$: $$ T_xT=Y_x(H_x+\Hess_x\theta), $$ where $Y_x\colon=T_{\nabla\theta}\exp_x$ and $H_x=\Hess_xd_{T(x)}^2/2$. Let $\a=\norm{\nabla\theta}$, $\g(t)\colon=\exp_x(t\nabla\theta)$, $E^1=\nabla\theta/\a$ and $E^1,E^2,\ldots,E^n$ an orthonormal basis of $T_xM$. The matrix of $T_xT$ with respect to this basis is given by $$ \left(\begin{array}{cc} 1&0\\ 0&Y \end{array}\right) \left( \left(\begin{array}{cc} 1&0\\ 0&K \end{array}\right) + \left(\begin{array}{cc} a&b^t\\ b&M \end{array}\right) \right) $$ where $H_x(E^1,E^1)=1$, $\Hess_x\theta(E^1,E^1)=a$, $b_j=\Hess_x\theta(E^j,E^1)$ for $j=2,\ldots,n$ and $$ K=(H_x(E^j,E^k))_{j,k=2}^n,\quad M=(\Hess_x\theta(E^j,E^k))_{j,k=2}^n~. $$ Since $T$ pushes $d\l=F\,d\s$ forward onto $d\nu=G\,d\s$ we get the following Monge-Ampere equation: $$ F(x)=G(T(x))\det T_xT~. $$ The $c$-concavity of $-\theta$ implies: $$ H_x+\Hess_x\theta\geq0~. $$ Finally by Bishop's comparism theorem (cf. I. Chavel p. 71) we have, presuming $\Ric\geq k(n-1)$: \begin{eqnarray} \det Y&\leq&v(\a)^n\colon=(\Sk(\a)/\a)^{n-1}\quad\mbox{and}\nonumber\\ \tr K&\leq&w(\a)\colon=(n-1)\a(\Ck/\Sk)(\a)\label{eq2}\tag{2}~. \end{eqnarray} where $\Ck\colon=\Sk^{\prime}$ and $$ \Sk(\a)\colon=\left\{\begin{array}{cl} \frac{\sin(\a\sqrt k)}{\sqrt k}&\mbox{if $k>0$}\\ \a&\mbox{if $k=0$}\\ \frac{\sinh(\a\sqrt{-k})}{\sqrt{-k}}&\mbox{if $k<0$} \end{array}\right. $$
$\proof$ For any smooth function $\mu:(0,diam(D))\rar\R^+$ we get by \eqref{eq1} and \eqref{eq2}: \begin{eqnarray*} \frac1{G(T)} &=&\frac1{F}\det Y \det\left( \begin{array}{cc} 1+a& b^t\\ b&K+M \end{array} \right)\\ &\leq&\frac{v(\a)^n}{F}v(\a)^n \det\left( \begin{array}{cc} 1+a&0\\ 0&K+M \end{array} \right)\\ &=&\frac{v(\a)^n}{F} \det\left( \begin{array}{cc} (1+a)\mu(\a)^{1-n}&0\\ 0&(K+M)\mu(\a) \end{array} \right) \end{eqnarray*} By the AM-GM-inequality we have for all positive definit matrices $A$: \begin{equation}\label{eq3}\tag{3} (\det A)^{1/n}\leq n^{-1}\tr A \end{equation} and since $\D\theta=\tr\Hess\theta=a+\tr M$ we conclude by \eqref{eq2} that \begin{equation}\label{eq4}\tag{4} nG(T(x))^{-1/n} \leq F^{-1/n}v(\a)\Big( (1+a)\mu(\a)^{1-n}+\mu(\a)w(\a)+\mu(\a)(\D\theta-a) \Big)~. \end{equation} Let $\l$ and $\nu$ respectively be the measures with densits $F$ and $G$ respectively. Integration of the left hand side with respect to $\l$ yields $$ \int_D G(T)^{-1/n}\,d\l =\int_D G^{-1/n}\,d\l_T =\int_D G^{-1/n}\,d\nu =\int_D G^{1-1/n}~. $$ As for the right hand side we get by the divergence theorem \begin{eqnarray*} \int_D F^{-1/n}v(\a)\mu(\a)\D\theta\,d\l &=&\int_D F^{1-1/n}v(\a)\mu(\a)\D\theta\\ &=&-\int_D F^{1-1/n}(v\mu)^\prime(\a)\la\nabla\a,\nabla\theta\ra\\ &&-\int_D (v\mu)(\a)\la\nabla F^{1-1/n},\nabla\theta\ra\\ &&+\int_{\pa D}F^{1-1/n}v(\a)\mu(\a)\la\nabla\theta,N\ra \end{eqnarray*} 1. Since $F|\pa D=0$ the boundary term vanishes - if $D$ is geodesically convex, we have for all $x\in\pa D$: $\la\nabla\theta,N\ra\leq0$. Anyway, the integral over the boundary is non-positive. 2. For any vectorfield $X$ \begin{eqnarray*} \la\nabla\a,X\ra &=&X\norm{\nabla\theta} =X\la\nabla\theta,\nabla\theta\ra/2\a\\ &=&\la\nabla_X\nabla\theta,\nabla\theta\ra/\a =\Hess\theta(X,\nabla\theta)/\a \end{eqnarray*} and thus $\la\nabla\a,\nabla\theta\ra=\Hess\theta(\nabla\theta,\nabla\theta)/\a=a\a$. From these observations and \eqref{eq4} we now infere that \begin{eqnarray*} n\int_D G^{1-1/n} &\leq&\int_D F^{1-1/n}v(\a)\Big((1+a)\mu(\a)^{1-n}+\mu(\a)w(\a)-a\mu(\a)\Big)\\ &&-\int_D F^{1-1/n}(v\mu)^\prime(\a)a\a+(v\mu)(\a)\la\nabla F^{1-1/n},\nabla\theta\ra\\ &=&\int_D F^{1-1/n}\Big(v(\a)\mu(\a)^{1-n}-v(\a)\mu(\a)-(v\mu)^\prime(\a)\a\Big)a\\ &&+\int_D F^{1-1/n}\Big(\mu(\a)^{1-n}+\mu(\a)w(\a)\Big)v(\a)\\ &&-\int_D v(\a)\mu(\a)\la\nabla F^{1-1/n},\nabla\theta\ra\\ \end{eqnarray*} Eventually we choose $\mu$ to satisfy the differential equation $$ v(\a)\mu(\a)^{1-n}-v(\a)\mu(\a)-(v\mu)^\prime(\a)\a=0~. $$ For $h(\a)\colon=\a\mu(\a)v(\a)$ this amounts to \begin{eqnarray*} h^\prime(\a) &=&\mu(\a)v(\a)+(v\mu)^\prime(\a)\a =v(\a)\mu(\a)^{1-n}\\ &=&v(\a)(h(\a)/\a v(\a))^{1-n} =v(\a)^n\a^{n-1}h(\a)^{1-n} \end{eqnarray*} or equivalently: $$ n^{-1}(h^n)^\prime(\a)=v(\a)^n\a^{n-1}=\Sk(\a)^{n-1}~. $$ Thus putting $h(0)=0$, we obtain: \begin{equation}\label{eq5}\tag{5} h(\a)=\Big(n\int_0^\a\Sk(t)^{n-1}\,dt\Big)^{1/n}. \end{equation} which implies $v(\a)\mu(\a)=h(\a)/\a$ and \begin{eqnarray*} \Big(\mu(\a)^{1-n}+\mu(\a)w(\a)\Big)v(\a) &=&h^\prime(\a)+h(\a)w(\a)/\a\\ &=&h^\prime(\a)+(n-1)h(\a)(\Ck/\Sk)(\a)\\ &=&\frac{(h\Sk^{n-1})^\prime(\a)}{\Sk^{n-1}(\a)}~. \end{eqnarray*} $\eofproof$