Prékopa-Leindler Type Inequalities

Definition and examples

Let $\mu$ be a measure on some measure space $X$. For $s\in(0,1)$ and $x,y\in X$ let $A_s(x,y)$ be a measurable subset of $X$ and $v_s:X\times X\rar\R$. We will say that $(X,\mu)$ admits a Prékopa-Leindler type inequality with distortion function $v_s$ and set $A_s$, if for all non-negative functions $f,g$ and $h$ such that \begin{equation}\label{1}\tag{1} \inf_{z\in A_s(x,y)}h(z) \geq e^{-v_s(x,y)}f(x)^{1-s}g(y)^s \end{equation} we have $$ \int h\,d\mu \geq\Big(\int f\,d\mu\Big)^{1-s}\Big(\int g\,d\mu\Big)^s~. $$

Property $(\t)$

If for all $x,y\in X$: $A(x,y)=X$, this is property $(\t)$, considered by B. Maurey (GAFA 91). Just to get a glimpse of what this might be good for assume that $\mu$ is a probability measure on the metric space $(X,d)$. Put for simplicity $s=1/2$ and $v_{1/2}(x,y)=\psi(d(x,y))$ for some increasing function $\psi$. Then for $h=1$, $g=I_A$ and $$ f(x)\colon=\inf\Big\{e^{2\psi(d(x,y))}/I_A(y):y\in A\Big\}=e^{2\psi(d_A(x))} $$ we get $$ \int e^{2\psi(d_A)}\,d\mu\leq\frac1{\mu(A)}, $$ which by Chebyshev's inequality implies: $\mu(d_A > t)\leq e^{-2\psi(t)}/\mu(A)$. Therefore the above inequality is called an inequality of isoperimetric type or a concentration inequality.

The classical PL inequality

This inequality indicates that the Lebesgue measure $\l$ on $\R^n$ admits a PL type inequality for $A_s(x,y)=\{(1-s)x+ty\}$ and $v_s(x,y)=1$. Moreover, replacing $f,g,h$ with $fe^{-V},ge^{-V},he^{-V}$ and assuming $\Hess V\geq c$, we get a PL type inequality for the measure $\mu$ with density $e^{-V}$ for $$ A_s(x,y)=\{(1-s)x+sy\} \quad\mbox{and}\quad v_s(x,y)=\frac12cs(1-s)\norm{x-y}^2 $$ i.e. if $$ h(z)\geq e^{-\frac12cs(1-s)\norm{x-y}^2}f(x)^{1-s}g(y)^s $$ then $$ \int h\,d\mu \geq\Big(\int f\,d\mu\Big)^{1-s}\Big(\int g\,d\mu\Big)^s~. $$ For an arbitrary log-concave probability measure on $\R^n$ we only can infer that $c\geq0$ and thus $v_s=1$. We are going to show that in many cases one can do much better than this!

Manifolds

Suppose that $(M,\la.,.\ra)$ is a complete $n$-dimensional Riemannian manifold such that $\Ric\geq R$. Then the Riemannian volume $v$ on $M$ admits a PL type inequality with distortion function $v_s(x,y)=\frac12Rs(1-s)d(x,y)^2$. The set $A_s(x,y)$ comprises all points $z$ such that $d(x,z)=sd(x,y)$ and $d(z,y)=(1-s)d(x,y)$.

Tangent spaces

Let $(M,\la.,.\ra)$ be a complete Riemannian manifold. On the tangent space $TM$ define a Riemannian metric as follows: for $U,V\in T_{X_m}TM$ let $X$ and $Y$ be any curves such that $X(0)=Y(0)=X_m$ and $X^\prime(0)=U$, $Y^\prime(0)=V$. Then put $$ \la U,V\ra\colon=\la\pi_*(U),\pi_*(V)\ra +\la\bnabla X(0),\bnabla Y(0)\ra $$ where $\pi:TM\rar M$ is the canonical projection and $\bnabla X$ denotes the covariant derivative of the vectorfield $X(s)$ along the curve $s\mapsto\pi(X(s))$ in $M$. A curve $G:[0,1]\rar TM$ is a geodesic with respect to this metric joining $X_m$ and $X_n$, if and only if $\g\colon=\pi\circ G$ is a geodesic in $M$ and $$ G(s)=(1-s)P_s(X_m)+(1-s)P_sP_1^{-1}(X_n) $$ where $P_s:T_mM\rar T_{\g(t)}M$ is parallel translation along $\g$. It follows that $$ d(X_m,X_n)^2=d(m,n)^2+\tnorm{X_m-P_1^{-1}(X_n)}^2~. $$ Assume $(M,v)$ admits a PL inequality with distortion function $\frac12s(1-s)Rd(x,y)^2$, $R>0$. On $TM$ we define a measure $\mu$ as follows: 1. conditioned on $\pi=m$ this is the gaussian measure with density $$ (2r\pi)^{-n/2}\exp\Big(-\tfrac1{2r}\norm{X_m}^2\Big) \qquad r>0~. $$ 2. For all open subsets $U$ of $M$: $\mu(\pi^{-1}(U))=v(U)$.
These conditions determine $\mu$ uniquely. This measure is probably of some importance in statistical mechanics, since it is invariant under the geodesic flow, i.e. the flow of the geodesic vectorfield on $TM$. Then $(TM,\mu)$ admits a PL inequality with distortion function $$ v_s(x,y)=\tfrac12(R\wedge r)s(1-s)d(x,y)^2~. $$ Similar constructions work on $S_rM\colon=\{X\in TM:\norm{X_m}=r\}$ or on the bundle of orthonormal frames $OM$.

Inverse Hölder

Now let us again assume that $\mu$ is a probability measure which admits a PL type inequality; choosing $f$ to be the constant function $1$ and defining $B_s(z,y)\colon=\{x:z\in A_s(x,y)\}$, we infer from $$ h(z)\geq\sup\Big\{e^{-v_s(x,y)}g(y)^s:\,x\in B_s(z,y),y\in X\Big\} $$ and $z\in A_s(x,y)$ that $x\in B_s(z,y)$ and thus \eqref{1} holds; hence $$ \int h\,d\mu\geq\Big(\int g\,d\mu\Big)^s~. $$ For $0 < p < q$ we put $s=p/q$ and replace $g$ with $g^q$ and $h$ with $h^p$. It follows that the condition $$ h(z)\geq\sup\Big\{e^{-v_{p/q}(x,y)/p}g(y):\,x\in B_{p/q}(z,y)\Big\} $$ implies the inequality: $$ \Big(\int h^p\,d\mu\Big)^{1/p}\geq\Big(\int g^q\,d\mu\Big)^{1/q}~. $$ In the following section we discuss the limit $p\to q$ of this inequality.

PL Type implies Log-Sobolev

Let $M$ be a complete Riemannian manifold and $\mu$ a probability measure which admits a PL type inequality with: $v_s(x,y)=(1-s)s\psi(d(x,y))$ where $\psi:\R_0^+\rar\R_0^+$ is increasing. We will also assume that for $s> 1/2$ say: $z\in A_s(x,y)$ implies $d(y,z)< c(1-s)d(y,x)$ for some constant $c$. Put $t=1-s$, $g\to e^{g/s}$, $f\to 1$, $h\to e^{g_s}$, then for all $x,y\in M$ we must have: $$ \inf_{z\in A_s(x,y)} g_s(z)\geq g(y)-st\psi(d(x,y)) $$ We claim that for $t\to0$: $$ g_s(z)\leq g(z)+t\psi^*(c\norm{\nabla_zg})+\Oh(t^2)~. $$ We just reproduce the argument of S. Bobkov and M. Ledoux! Write $y=\exp_z(ctrY)$, $\norm Y=d(x,y)$, $0< r< 1$, then: $$ g(y)=g(z)+ctr\la\nabla_zg,Y\ra+\Oh(t^2) $$ Thus we have to prove that $$ \psi^*(c\norm{\nabla_zg}) \geq rc\la\nabla_zg,Y\ra-\psi(\norm Y) $$ which holds by definition of $\psi^*$. Since $(\int e^{g/s}\,d\mu)^s=\int e^{g}\,d\mu+t\,\Ent_\mu(e^g)+\Oh(t^2)$, where $\Ent_\mu(f)\colon=\int f\log f\,d\mu$, it follows that $$ \Ent_\mu(e^g) \leq\int\psi^*(c\norm{\nabla g})e^g\,d\mu~. $$ If $M=\R^n$ and $d(x,y)=\norm{x-y}$ for some norm $\Vert.\Vert$ on $\R^n$, then, by the same argument: \begin{equation}\tag{2}\label{2} \Ent_\mu(e^g) \leq\int\psi^*(c\norm{\nabla g}_*)e^g\,d\mu \end{equation} where $\norm{.}_*$ denotes the dual norm. As is well known, replacing $g$ with $tf$, we get for $t\to0$ the Poincaré inequality: $$ \int\Big(f-\int f\,d\mu\Big)^2\,d\mu \leq\frac12\psi^{*\dprime}(0)c^2\int\norm{\nabla f}_*^2\,d\mu~. $$ Also, by Herbst's argument (cf. [BL]) \eqref{2} implies the concentration inequality: $$ \mu\Big(\Big|f-\int f\,d\mu\Big| > t\Big) \leq e^{-\vp^*(t)}, $$ where $\vp(t)\colon=t\int_0^t\psi^*(s)/s^2\,ds$ and $\vp^*$ its Legendre transform.

The exponential measure

Following B. Maurey (GAFA 91) we (&D. Cordero-Erausquin) will prove a PL type inequality for the measure $\mu(dx)=e^{-x}\,dx$ on the real line: For $s\in(0,1)$ let $v$, $w$ be functions on $\R$, such that $|w^\prime|< (1-s)\wedge s$ and \begin{equation}\tag{3}\label{3} \Big(1-\tfrac{w^\prime}{1-s}\Big)^{1-s} \Big(1+\tfrac{w^\prime}{s}\Big)^{s} e^{w-v}\geq1 \end{equation} Suppose $f,g$ and $h$ are non-negative functions on $\R$ such that for all $x,y\in\R$: $$ h((1-s)x+sy-w(x-y))\geq e^{-v(x-y)}f(x)^{1-s}g(y)^s $$ Then for $\mu(dx)=e^{-x}\,dx$: $$ \int h\,d\mu \geq\Big(\int f\,d\mu\Big)^{1-s} \Big(\int g\,d\mu\Big)^{s} $$ Put $I_0=\int f\,d\mu$, $I_1=\int g\,d\mu$ and define for $t\in[0,1]$ functions $x(t)$ and $y(t)$ by $$ \int_{-\infty}^{x(t)}f(u)e^{-u}\,du=tI_0 \quad\mbox{and}\quad \int_{-\infty}^{y(t)}g(u)e^{-u}\,du=tI_1~, $$ i.e. the measures with density $f(u)e^{-u}/I_0$ and $g(u)e^{-u}/I_1$ respectively are the image measures of the uniform distribution on $(0,1)$ under the mappings $t\mapsto x(t)$ and $t\mapsto y(t)$ respectively. Then $x^\prime=I_0e^x/f(x)$ and $y^\prime=I_1e^y/g(y)$. Put $$ z(t)\colon=(1-s)x(t)+sy(t)-w(x(t)-y(t)), $$ then we have $$ z^\prime=((1-s)-w^\prime(x-y))x^\prime +(s+w^\prime(x-y))y^\prime $$ Since $-s < w^\prime < 1-s$, we get by the AM-GM inequality: \begin{eqnarray*} z^\prime &=&((1-s)-w^\prime(x-y))I_0e^x/f(x) +(s+w^\prime(x-y))I_1e^y/g(y)\\ &=&(1-s)\Big(1-\tfrac{w^\prime(x-y)}{1-s}\Big)I_0e^x/f(x) +s\Big(1+\tfrac{w^\prime(x-y)}{s}\Big)I_1e^y/g(y)\\ &\geq&I_0^{1-s}I_1^s \Big(1-\tfrac{w^\prime(x-y)}{1-s}\Big)^{1-s} \Big(1+\tfrac{w^\prime(x-y)}{s}\Big)^{s} e^{(1-s)x+sy}/(f(x)^{1-s}g(y)^s)\\ &\geq&I_0^{1-s}I_1^s \Big(1-\tfrac{w^\prime(x-y)}{1-s}\Big)^{1-s} \Big(1+\tfrac{w^\prime(x-y)}{s}\Big)^{s} e^{z+w(x-y)-v(x-y)}/h(z) \end{eqnarray*} It follows that $$ h(z)e^{-z}z^\prime \geq I_0^{1-s}I_1^s \Big(1-\tfrac{w^\prime(x-y)}{1-s}\Big)^{1-s} \Big(1+\tfrac{w^\prime(x-y)}{s}\Big)^{s} e^{w(x-y)-v(x-y)} \geq I_0^{1-s}I_1^s $$ and therefore $$ I_0^{1-s}I_1^s \leq\int_0^1 h(z(t))e^{-z(t)}z^\prime(t)\,dt =\int_\R h(z)e^{-z}\,dz~. $$ For $s=1/2$ the functions $w(x)=2\log\cosh(x/4)$ and $v(x)=w(x)/2$ satisfy \eqref{3} with equality. For arbitrary $s\in(0,1)$ we put for some $c>0$: $w(x)=4cs(1-s)\log\cosh(x/4)$ and $v=w/2$. Then \eqref{3} is equivalent to $$ (1-cs\tanh(x/4))^{1-s}(1+c(1-s)\tanh(x/4))^s\cosh(x/4)^{2cs(1-s)} \geq1~. $$ Since $\cosh^2=(1-\tanh^2)^{-1}$, we get by putting $t=\tanh(x/4)\in(-1,1)$: $$ (1-s)\log(1-cst)+s\log(1+c(1-s)t)-cs(1-s)\log(1-t^2)\geq0~. $$ We consider the left hand side as a function $\vp(t)$ on the interval $(-1,1)$. Since $\vp(0)=0$ it suffices to prove that $\vp$ is decreasing on $(-1,0)$ and increasing on $(0,1)$: $$ \vp^\prime(t) =-\frac{cs(1-s)}{1-cst} +\frac{cs(1-s)}{1+c(1-s)t} +\frac{2cs(1-s)t}{1-t^2} =cs(1-s)t\left( -\frac{c}{(1-cst)(1+c(1-s)t)} +\frac{2}{1-t^2} \right) $$ Hence we have to choose $c$ such that the last factor is non-negative, which boils down to $$ \forall t\in(-1,1)\qquad -c(1-t^2)+2(1-cst)(1+c(1-s)t)\geq0~. $$ We choose $c$ in such a way that the quadratic polynomial attains its minimum at $t=\pm1$. This is the case for $c\colon=s^{-1}\wedge(1-s)^{-1}$. With this choice the minimum of the quadratic polynomial is $0$. Hence \begin{equation}\tag{4}\label{4} w(x)=4(s\wedge(1-s))\log\cosh(x/4) \quad\mbox{and}\quad v(x)=2(s\wedge(1-s))\log\cosh(x/4) \end{equation} Thus the exponential measure $\mu(dx)=e^{-x}\,dx$ admits a PL type inequality with distortion function $v_s$ and set $A_s$ made up of a single point $z_s(x,y)$ given by \begin{eqnarray*} v_s(x,y)&=&2((1-s)\wedge s)\log\cosh\Big(\frac{x-y}4\Big) \quad\mbox{and}\\ z_s(x,y)&=&(1-s)x+sy-4((1-s)\wedge s)\log\cosh\Big(\frac{x-y}4\Big)~. \end{eqnarray*} Since $4\log\cosh(x/4)\leq|x|$, the point $z_s$ lies always in the segment joining $x$ and $y$ and it's always smaller than $(1-s)x+sy$. Moreover, for $s\geq1/2$ we have $$ |y-z_s| \leq(1-s)|y-x|\Big(1+\frac{4\log\cosh\frac{y-x}4)}{|y-x|}\Big) \leq2(1-s)|y-x|~. $$ For small values of $x$ the function $x\mapsto2\log\cosh(x/4)$ is quadratic: $\sim(x/4)^2$ and for large values of $x$ it's linear: $\sim x/2$. The Legendre transform $v^*$ of $v(x)=2\log\cosh(x/4)$ is defined for $|y| < 1/2$ and is given by $v^*(y)=xy-v(x)$, where $y=v^\prime(x)=\tanh(x/4)/2$, i.e. $x=4\atanh(2y)=2\log(1+2y)/(1-2y)$, $\cosh(2y)=1/\sqrt{1-4y^2}$: \begin{eqnarray*} v^*(y) &=&4y\,\atanh(2y)-v(4\atanh(2y)) =2y\log\frac{1+2y}{1-2y}+\log(1-4y^2)\\ &=&(1+2y)\log(1+2y)+(1-2y)\log(1-2y)~. \end{eqnarray*}

graph of w graph of w*

Stability results

Tensorization

Let $\mu_1$ and $\mu_2$ be measures on $X_1$ and $X_2$ respectively. Suppose that for some $s\in(0,1)$ $(X_i,\mu_i)$, $i\in\{1,2\}$, admits a PL type inequality with distortion function $v_i$ and set $A_i$. Then $(X_1\times X_2,\mu_1\otimes\mu_2)$ admits a PL type inequlity with distortion function $$ v(x,y)=v_1(x_1,y_1)+v_2(x_2,y_2) \quad\mbox{and set}\quad A(x,y)=A_1(x_1,y_1)\times A_2(x_2,y_2) $$ where $x=(x_1,x_2)$ and $y=(y_1,y_2)$: Define $h_{x_2}(x_1)\colon=h(x_1,x_2)$ and $H(x_2)=\int h_{x_2}\,d\mu_1$, $F(x_2)=\int f_{x_2}\,d\mu_1$, $G(x_2)=\int g_{x_2}\,d\mu_1$; if \begin{equation}\tag{5}\label{5} \inf_{z_2\in A_2(x_2,y_2)} H(z_2) \geq e^{-v_2(x,y)}F(x_2)^{1-s}G(y_2)^{s} \end{equation} then $$ \int h\,d\mu\geq \Big(\int f\,d\mu\Big)^{1-s} \Big(\int g\,d\mu\Big)^{s} $$ Now \eqref{5} is equivalent to $$ \inf_{z_2\in A_2(x_2,y_2)} \int h_{z_2}\,d\mu_1 \geq e^{-v_2(x_2,y_2)} \Big(\int f_{x_2}\,d\mu_1\Big)^{1-s} \Big(\int g_{y_2}\,d\mu_1\Big)^{s} $$ which, by assumption holds if for all $x_2,y_2\in X_2$, all $z_2\in A_2(x_2,y_2)$ and all $x_1,y_1\in X_1$: $$ \inf_{z_1\in A_1(x_1,y_1)}h_{z_2}(z_1) \geq e^{-v_2(x_2,y_2)-v_1(x_1,y_1)} f(x_1,x_2)^{1-s}g(y_1,y_2)^s~. $$

Averaging measures

Suppose we are given a family $\mu_t$, $t\in\R$, of measures on $X$ and a measure $\nu$ on $\R$. Then $$ \mu(A)\colon=\int\mu_t(A)\,\nu(dt)~. $$ is another measure on $X$ and for all measurable $h:X\rar[0,\infty]$ we have Then $$ \int h\,d\mu=\int\int h(x)\,\mu_t(dx)\,\nu(dt) $$ Suppose that there is a measure $\l$ on $X$ such that for all $t$: $\mu_t(dx)=\r(t,x)\,\l(dx)$: for all $t,u\in\R$ and all $x,y\in X$: $$ \inf_{(w,z)\in A(t,u)\times B(x,y)}h(z)\r(w,z) \geq e^{-v_1(t,u)-v_2(x,y)}f(x)^{1-s}g(y)^s\r(t,x)^{1-s}\r(u,y)^s $$ then for all $t$: $$ \int h\,d\mu\geq\Big(\int f\,d\mu\Big)^{1-s}\Big(\int g\,d\mu\Big)^s $$

Image measures

Let $F:X\rar Y$ be a map such that $u(F(x_1),F(x_2))\leq v(x_1,x_2)$ - in case of a bijection we may take $u(y_1,y_2)=v(F^{-1}(y_1),F^{-1}(y_2))$ - and $\nu=\mu_F$, i.e. $\nu(B)=\mu(F^{-1}(B))$, then $\int f\,d\nu=\int f(F)\,d\mu$. If \begin{equation}\tag{6}\label{6} \inf_{z\in A(x_1,x_2)}h(F(z)) \geq e^{-v(x_1,x_2)}f(F(x_1))^{1-s}g(F(x_2))^s, \end{equation} then $\int h\,d\nu\geq(\int f\,d\nu)^{1-s}(\int f\,d\nu)^s$. By assumption \eqref{6} is implied by $$ \inf_{w\in F(A(x_1,x_2))}h(w) \geq e^{-u(F(x_1),F(x_2))}f(F(x_1))^{1-s}g(F(x_2))^s, $$ Putting $B(y_1,y_2)=\bigcup\{F(A(x_1,x_2)):x_i\in F^{-1}(y_i)\}$ we get: $$ \inf_{w\in B(y_1,y_2)}h(w) \geq e^{-u(y_1,y_2)}f(y_1)^{1-s}g(y_2)^s~. $$ Thus: $(Y,\nu)$ admits a PL type inequality with distortion function $u$ and set $B$.

Convolution of measures on a group $G$

Let $\mu_i$, $i=1,2$ be (finite) measures on $G$ for non-negative functions $f,g$ and $h$ put $h_{x_2}(x_1)\colon=h(x_1x_2)$ and $H(x_2)=\int h_{x_2}\,d\mu_1$, $F(x_2)=\int f_{x_2}\,d\mu_1$, $G(x_2)=\int g_{x_2}\,d\mu_1$. If \begin{equation}\tag{7}\label{7} \inf_{z_2\in A_2(x_2,y_2)}H(z_2) \geq e^{-v_2(x_2,y_2)}F(x_2)^{1-s}G(y_2)^{s} \end{equation} then for $\mu\colon=\mu_1*\mu_2$: $\int h\,d\mu\colon=\int h(x_1x_2)\,\mu_1(x_1)\,d\mu_2(x_2)$ and thus $$ \int h\,d\mu\geq \Big(\int f\,d\mu\Big)^{1-s} \Big(\int g\,d\mu\Big)^{s} $$ \eqref{7} is equivalent to $$ \inf_{z_2\in A_2(x_2,y_2)}\int h_{z_2}\,d\mu_1 \geq e^{-v_2(x_2,y_2)} \Big(\int f_{x_2}\,d\mu_1\Big)^{1-s} \Big(\int g_{y_2}\,d\mu_1\Big)^{s} $$ which holds if $$ \inf_{z_1\in A_1(x_1,y_1)}\inf_{z_2\in A_2(x_2,y_2)} h_{z_2}(z_1) \geq e^{-v_1(x_1,y_1)-v_2(x_2,y_2)} f_{x_2}(x_1)^{1-s}g_{y_2}(y_1)^s $$ Put $x=x_1x_2$, $y=y_1y_2$, then $x_2=x_1^{-1}x$, $y_2=y_1^{-1}y$ and \begin{eqnarray*} v(x,y)&=&\inf\{v_1(x_1,y_1)+v_2(x_1^{-1}x,y_1^{-1}y):\,x_1,y_1\in G\} \quad\mbox{and}\\ A(x,y)&=&\bigcup\{A_1(x_1,y_1)A_2(x_1^{-1}x,y_1^{-1}y):\, x_1,y_1\in G\}~. \end{eqnarray*} Then \eqref{7} holds if $$ \inf_{z\in A(x,y)}h(z)\geq e^{-v(x,y)}f(x)^{1-s}g(y)^s $$

Further Examples

The one sided exponential measure

The one sided exponential measure $\mu_+(dx)=e^{-x}I_{\R^+}\,dx$ admits a PL typ inequality with distortion \begin{equation}\tag{8}\label{8} v_s(x,y)=2(s\wedge(1-s))\log\cosh(|x-y|/4) \quad\mbox{and set}\quad A_s(x,y)=\{(1-s)x+sy-2v_s(x,y)\}~. \end{equation}
Let $f:\R_0^+\rar\R_0^+$ be a smooth density of a probability measure $\mu$ on $\R_0^+$ such that $(\log f)^\prime\leq-1$. Then $\mu$ is the image measure of $\mu_+$ under a Lipschitz mapping $F$ whose Lipschitz constant is at most $1$.
$\proof$ Let $F:\R_0^+\rar\R_0^+$ be an increasing function such that $F(0)=0$ and for all $x>0$: $$ \int_0^x e^{-t}\,dt=\int_0^{F(x)} f(t)\,dt $$ Taking the derivative we get: $e^{-x}=F^\prime f(F)$. Thus $F^\prime\leq1$ if and only if $e^{-x}\leq f(F)$. Since $f$ is decreasing this holds if and only if $F(x)\leq g(e^{-x})=\colon h(x)$, where $g$ denotes the inverse of $f$. Putting $$ G(x)\colon=\int_0^x e^{-t}\,dt-\int_0^{h(x)} f(t)\,dt $$ we have to prove that $G(x)\leq0$. Now $G(0)\leq0$, $G(\infty)=0$ and $$ \int_0^{h(x)}f(t)\,dt =-G(0)+\int_0^x f(h(t))h^\prime(t)\,dt =-G(0)+\int_0^x e^{-t}(-e^{-t}g^\prime(e^{-t}))\,dt $$ and therefore: $$ G(x)= \int_0^x e^{-t}(1+e^{-t}g^\prime(e^{-t}))\,dt +G(0) =\int_{e^{-x}}^1 1+sg^\prime(s)\,ds +G(0) $$ Since $G(\infty)=0$, it suffices to prove that for all $s\in(0,1)$: $1+sg^\prime(s)\geq0$. Putting $s=f(x)$, we have: $$ 1+sg^\prime(s) =1+\frac{f(x)}{f^\prime(x)}\geq0~. $$ $\eofproof$
Typical examples are $\g_\a$-distributions with density $\G(\a)^{-1}x^{\a-1}e^{-x}I_{\R^+}(x)$ for $\a\leq1$.

The uniform measure on $(0,a)^n$

The uniform distribution on $(0,a)$, $a>0$, is the image measure of $\mu_+$ under the mapping $T(x)=ae^{-x}$; thus a distortion function is $$ v_s(x,y)=2(s\wedge(1-s))\log\cosh\Big(\frac14\log\frac xy\Big)~. $$ We could have taken equally well $T(x)=a(1-e^{-x})$, in which case the distortion function is given by $$ v_s(x,y)=2(s\wedge(1-s))\log\cosh\Big(\frac14\log\frac{a-x}{a-y}\Big)~. $$ Since $t\mapsto1/t$ is convex we get by the
Hadamard-Hermite inequality: $|\log x-\log y|=|\int_y^x t^{-1}\,dt|\geq2|x-y|/(x+y)$: $$ v_s(x,y)\geq2(s\wedge(1-s))\log\cosh\Big(\frac{|x-y|}{2(x+y)}\Big) \geq2(s\wedge(1-s))\log\cosh\Big(\frac{|x-y|}{4a}\Big)~. $$ The set $A_s(x,y)$ contains a single point: $$ ae^{(1-s)(\log(x/a)+s\log(y/a)-2v_s(-\log(x/a),-\log(y/a))} =\frac{x^{1-s}y^s}{\cosh(\frac14|\log x-\log y|)^{4s\wedge(1-s)}}~. $$ Thus we may wonder to prove a PL type inequality on e.g. $(0,1)$ directly, i.e. if $$ h(x^{1-s}y^s/w_s(x-y))\geq e^{-v_s(x-y)}f(x)^sg(y)^{1-s} $$ then $$ \int_0^1 h\,dx \geq\Big(\int_0^1 f\,dx\Big)^{1-s}\Big(\int_0^1 g\,dx\Big)^s $$ On $(0,a)^n$ a suitable distortion function is $$ 2(s\wedge(1-s))\sum_j\log\cosh\Big(\frac{|x_j-y_j|}{2(x_j+y_j)}\Big)~. $$ The curve $s\mapsto(x_1^{1-s}y_1^s,\ldots,x_n^{1-s}y_n^s)$ is the geodesic, joining $(x_1,\ldots,x_n)$ and $(y_1,\ldots,y_n)$, with respect to the pull back metric of the canonical metric on $(\R^+)^n$ under the mapping $T^{-1}:(0,a)^n\rar(\R^+)^n$, $T^{-1}(x_1,\ldots,x_n)=(-\log(x_1/a),\ldots,-\log(x_n/a))$; it is given by $$ \sum_j x_j^{-2}\,dx_j\otimes dx_j~. $$

The Haar measure on $S^1$

Of course, this is a particular case of the uniform distribution. However, we prefer to choose a gaussian measure for reference; so let $\mu_2$ be the measure $\mu_2(dx)\colon=\pi^{-1/2}e^{-x^2}\,dx$ on $\R$. For this measure we have $A(x,y)=\{(1-s)x+sy\}$ and $v(x,y)=s(1-s)(x-y)^2$. Define $T:\R\rar S^1$ by $T(-x)=-T(x)$ and for $x>0$ $$ T(x)=\left(\sin\Big(2\sqrt\pi\int_0^x e^{-t^2}\,dt\Big), \cos\Big(2\sqrt\pi\int_0^x e^{-t^2}\,dt\Big)\right)~. $$ Then the Lipschitz constant of $T$ is $2\sqrt\pi$ and the image measure of $\mu_2$ under $T$ is the normalized Haar measure $m$ on $S^1$. Thus for the measure $m$ on $S^1$ we have \begin{equation}\tag{9}\label{9} v_s(x,y)=\frac{s(1-s)}{4\pi}d(x,y)^2 \quad\mbox{and set}\quad A_s(x,y) =\left\{T\left((1-s)T^{-1}(x)+sT^{-1}(y)\right)\right\}~. \end{equation} The curve $t\mapsto T((1-t)T^{-1}(x)+tT^{-1}(y))$ is the geodesic joining $x,y\in S^1$ with respect to the pull back metric of the canonical euclidean metric of $\R$ under $T^{-1}$. Similarly the normalized volume on $S^n$ can be constructed as the image measure of the gaussian measure on $\R^n$ under a mapping $T:\R^n\rar S^n$ which only depends on the distance.

The Laplace distribution

The Laplace measure $\mu(dx)=\frac12e^{-|x|}\,dx$ is the convolution of $e^{-x}I_{\R^+}$ and $e^{x}I_{\R^-}$. $v_1(x)=v_2(x)=2s\wedge(1-s)\log\cosh(x/4)$ and $$ A_1(x,y)=\{(1-s)x+sy-2v_1(x-y)\}, A_2(x,y)=\{(1-s)x+sy+2v_1(x-y)\}~. $$ It follows that $v(x,y)=2v_1((x-y)/2)$ and $A(x,y)$ is the interval with center $(1-s)x+sy$ and length $2s\wedge(1-s)|x-y|$. Thus $A(x,y)$ is always a subinterval of the segment joining $x$ and $y$ and both coincide if $s=1/2$. By tensorization we obtain for the $n$-dimensional Laplace measure $\mu(dx)=2^{-n}e^{-\norm x_1}$: \begin{equation}\tag{10}\label{10} v_s(x,y)=4(s\wedge(1-s))\sum_{j=1}^n\log\cosh((x_j-y_j)/8) \end{equation} and $A_s(x,y)$ is the parallelepiped with the following properties:
  1. The center of $A_s(x,y)$ is the point $(1-s)x+sy$.
  2. The edges of $A_s(x,y)$ are parallel to the coordinate axes and the diagonal is contained in the segment joining $x$ and $y$.
  3. The length of the diagonal of $A_s(x,y)$ is $2s\wedge(1-s)\norm{x-y}$.
By lemma any symmetric probability measure $\mu(dx)=e^{-V}\,dx$ s.t. for all $x>0$: $V^\prime(x)\geq1$ is the image measure of the Laplace distribution under a Lipschitz mapping with constant at most $1$. If the random variable $X$ is $\g_\a$-distributed for some $\a\in(0,1)$, then the distribution of its symmetrization has this property.
Next we include a result by M. Ledoux, which indicates that actually any log-concave probability on $\R$ is the image measure of the Laplace distribution under a Lipschitz mapping. We need the following definition: Let $f$ be the density of a probability measure $\mu$ on $\R$ such that for all $x\in\R$: $f(x)> 0$; put $F(x)\colon=\int_{-\infty}^x f(y)\,dy$, then the function $I:[0,1]\rar\R$, $x\mapsto f(F^{-1}(x))$, is said to be the isoperimetric function of $\mu$.
Let $f,g$ be densities of log-concave probability measures on $\R$ and let $I$ and $J$ be the corresponding isoperimetric functions. Define a mapping $T:\R\rar\R$ by $$ \int_{-\infty}^x f(t)\,dt=\int_{-\infty}^{T(x)}g(t)\,dt~. $$ Then the Lipschitz constant of $T$ is given by $\sup\{I(x)/J(x):x\in(0,1)\}$.
$\proof$ Putting $F(x)\colon=\int_{-\infty}^xf(t)\,dt$ an $G(x)\colon=\int_{-\infty}^xg(t)\,dt$, we have $F=G\circ T$ or $T=G^{-1}\circ F$. Thus $$ T^\prime =G^{-1\prime}\circ F f =f/g\circ G^{-1}\circ F =f/J\circ F \quad\mbox{i.e.}\quad T^\prime\circ F^{-1}=I/J~. $$ $\eofproof$
The isoperimetric function of the Laplace distribution is given by $I(t)=t\wedge(1-t)$. Since the isoperimetric function $J$ of any log-concave probability measure $\mu$ is a concave function on $(0,1)$, it follows that in this case the Lipschitz constant of $T$ is bounded by $I(1/2)/J(1/2)=1/(2g(m))$, where $m$ is the median of $\mu$. Since it's usually not so easy to calculate $g(m)$, the following result, which was communicated to me by M. Fradelizi, will be of interest: $$ 1/(2g(m))\leq\inf\{1/g(x):x\in\R\}~. $$ Moreover in this case the function $J/I$ is decreasing on $(0,1/2)$ and increasing on $(1/2,1)$, which implies that $T$ is convex on $(-\infty,0)$ and concave on $(0,\infty)$. Typical examples are $\g_\a$-distributions for $\a\geq1$, where the Lipschitz constant is of magnitude $\sqrt\a$.
In order to compute the distortion function of image measures on the real line we need the following
Let $T:\R\rar\R$ be a diffeomorphism such that $T(-x)=-T(x)$ and $T(\infty)=\infty$. If $v:\R\rar\R_0^+$ is differentiable such that $$ v^\prime(x)=0\Rar x=0,\quad \forall z\neq0:\lim_{x\to\pm\infty} v(T^{-1}(x)-T^{-1}(x-z))=\infty~. $$ Then $u(x)=v(2T^{-1}(x/2))$ satisfies for all $x,y\in\R$: $u(T(x)-T(y))\leq v(x-y)$.
$\proof$ Putting $S=T^{-1}$, we have to prove that $$ u(z)\leq\inf\{u(S(x)-S(x-z)):\,x\in\R\}~. $$ By assumption for $z\neq0$ the infimum of the function $x\mapsto v(S(x)-S(x-z))$ is a local minimum. Thus $$ v^\prime(S(x)-S(x-z))(S^\prime(x)+S^\prime(x-z))=0 $$ and this holds if and only if $x=x-z$ or $x=-(x-z)$, i.e. if and only if $x=z/2$. $\eofproof$
For $p > 1$ let $\mu_p$ be the probability measure with density $\frac12c_pe^{-|t|^p}$, $c_p=1/\G(1+1/p)$. Then $\mu_p$ is the image measure of $\mu_1$ under a mapping $T$ s.t. $|T^\prime|\leq1/c_p$ and for $x > 0$: $T(x)\leq x^{1/p}$: Since $\mu_p$ is symmetric, $m=0$ is a median of $\mu_p$ and by
lemma the Lipschitz constant is $1/c_p$. As for the second assertion, we have to show that $$ F(x)\colon=\int_0^{x^p} e^{-t}-\int_0^{x}c_pe^{-t^p}\,dt\leq0~. $$ Obviously: $F(0)=F(\infty)=0$. Moreover, the equation $F^\prime(x)=0$ is equivalent to $px^{p-1}-c_p=0$, hence there is a single solution $x_p$ to this equation and since $F$ decreases on $[0,x_p]$, it follows that $F(x)\leq0$.
Let $F:\R\rar\TT$ be the covering map $x\mapsto e^{ix}$ and $\mu$ the image measure of $\mu_t(dx)=(4\pi t)^{-1/2}e^{-x^2/4t}$ under $F$, then $u(z_1,z_2)\colon=s(1-s)d(z_1,z_2)^2/4t$ is a distortion function and $A(z_1,z_2)\colon=\{z_s e^{2\pi isn}:n\in\Z\}$ is a suitable set. If $s=p/q$ s.t. $p,q\in\N$, $(p,q)=1$, then $A(z_1,z_2)=\{z:z^q=z_1^{q-p}z_2^p\}$, in particular $A(z_1,z_2)$ contains exactly $q$ points.
Let $P_t=e^{-\D t}$ be the heat semigroupe on the $n$-dimensional flat torus $\TT^n$. Suppose $f,g,h:\TT^n\rar\R_0^+$ are such that for all $x,y\in\TT^n$: $$ \inf\{h(z):\,z^2=xy\}\geq e^{-d(x,y)^2/16t}\sqrt{f(x)g(y)}~. $$ Then for all $x\in\TT^n$: $$ P_th(x)\geq\sqrt{P_tf(x)P_tg(x)}~. $$


<Home>
Last modified: Tue Sep 17 13:37:59 CEST 2024