Character 1:
Dimension: 1 Multiplicity: 1, i.e. the following SALC is an eigen vector of the Hamiltonian $H$:
$$
b_1=\tfrac1{\sqrt6}(e_1+e_2+e_3+e_4+e_5+e_6),\\
$$
Character 6:
Dimension: 2 Multiplicity: 1, i.e. the following SALCs are eigen vectors for $H$:
\begin{eqnarray*}
b_2&=&\tfrac1{2}(-e_1+e_3-e_4+e_6),\\
b_3&=&\tfrac1{\sqrt{12}}(e_1+e_3+e_4+e_6)+\tfrac1{\sqrt3}(-e_2-e_5)
\end{eqnarray*}
Character 10:
Dimension: 3 Multiplicity: 1 i.e. the following SALCs are eigen vectors for $H$:
\begin{eqnarray*}
b_4&=&\tfrac1{\sqrt2}(-e_1+e_3),\\
b_5&=&\tfrac1{\sqrt2}(-e_2+e_4),\\
b_6&=&\tfrac1{\sqrt2}(-e_3+e_6)
\end{eqnarray*}
Maximal number of distinct eigen values of $H$: 3. Thus $H$ is given by:
$$
Hb_1=\l_1b_1,\quad
Hb_2=\l_2b_2,\quad
Hb_3=\l_2b_3,\quad
Hb_4=\l_3b_4,\quad
Hb_5=\l_3b_5,\quad
Hb_6=\l_3b_6~.
$$