Character 1:
Dimension: 2 Multiplicity: 2, i.e. the following SALCs are not necessarily eigen vectors of the Hamiltonian $H$ of the molecule but $H$ has at most two distinct eigen values on this space:
\begin{eqnarray*}
b_1&=&\tfrac1{\sqrt6}(s_1+s_2+s_3+s_4+s_5+s_6),\\
b_2&=&\tfrac1{\sqrt6}(-p_{1x}-p_{4x})
+\tfrac1{\sqrt{24}}(-p_{2x}+p_{3x}+p_{5x}-p_{6x})
+\tfrac1{\sqrt8}(-p_{2y}-p_{3y}+p_{5y}+p_{6y})
\end{eqnarray*}
Character 2:
Dimension: 0 Multiplicity: 0
Character 3:
Dimension: 1 Multiplicity: 1, i.e. the following is an eigen vector for $H$:
$$
b_3=\tfrac1{\sqrt6}(p_{1y}+p_{4y})
+\tfrac1{\sqrt{24}}(-p_{2y}-p_{3y}-p_{5y}-p_{6y})
+\tfrac1{\sqrt8}(p_{2x}-p_{3x}+p_{5x}-p_{6x})
$$
Character 4:
Dimension: 0 Multiplicity: 0
Character 5:
Dimension: 1 Multiplicity: 1, i.e. the following is an eigen vector for $H$ :
$$
b_4=\tfrac1{\sqrt6}(p_{1y}-p_{4y})
+\tfrac1{\sqrt{24}}(p_{2y}-p_{3y}-p_{5y}+p_{6y})
+\tfrac1{\sqrt8}(-p_{2x}-p_{3x}+p_{5x}+p_{6x})
$$
Character 6:
Dimension: 1 Multiplicity: 1, i.e. the following is an eigen vector for $H$:
$$
b_5=\tfrac1{\sqrt6}(p_{1z}-p_{2z}+p_{3z}-p_{4z}+p_{5z}-p_{6z})
$$
Character 7:
Dimension: 2 Multiplicity: 2, i.e. the following SALCs are not necessarily eigen vectors for $H$ and $H$ has at most two distinct eigen values on this space:
\begin{eqnarray*}
b_6&=&\tfrac1{\sqrt6}(-s_1+s_2-s_3+s_4-s_5+s_6),\\
b_7&=&\tfrac1{\sqrt6}(p_{1x}-p_{4x})
+\tfrac1{\sqrt{24}}(p_{2x}+p_{3x}+p_{4x}+p_{6x})
+\tfrac1{\sqrt8}(p_{2y}-p_{3y}+p_{5y}-p_{6y})
\end{eqnarray*}
Character 8:
Dimension: 1 Multiplicity: 1, i.e. the following is an eigen vector for $H$:
$$
b_8=\tfrac1{\sqrt6}(p_{1z}+p_{2z}+p_{3z}+p_{4z}+p_{5z}+p_{6z})
$$
Character 9:
Dimension: 2 Multiplicity: 1, i.e. the following are eigen vectors for $H$:
\begin{eqnarray*}
b_9&=&\tfrac12(p_{1z}+p_{3z}-p_{4z}+p_{6z}),\\
b_{10}&=&\tfrac1{\sqrt3}(-p_{2z}-p_{5z})
+\tfrac1{\sqrt{12}}(p_{1z}+p_{3z}-p_{4z}-p_{6z})
\end{eqnarray*}
Character 10:
Dimension: 6 Multiplicity: 3, i.e. the following SALCs are not necessarily eigen vectors for $H$ and $H$ has at most three distinct eigen values on this space:
\begin{eqnarray*}
b_{11}&=&\tfrac12(-s_1+s_3+s_4-s_6)\\
b_{12}&=&\tfrac12(-p_{1x}-p_{4x})+\tfrac14(-p_{3x}-p_{6x})+\tfrac{\sqrt3}4(p_{3y}+p_{6y})\\
b_{13}&=&\tfrac12(-p_{1y}-p_{4y})+\tfrac14(-p_{3y}-p_{6y})+\tfrac{\sqrt3}4(-p_{3x}-p_{6x})\\
b_{14}&=&\tfrac1{\sqrt{12}}(s_1+s_3-s_4-s_6)+\tfrac1{\sqrt3}(s_2-s_5)\\
b_{15}&=&\tfrac1{\sqrt{48}}(p_{1x}+p_{3x}+p_{4x}+p_{6x})+\tfrac14(-p_{1y}+p_{3y}-p_{4y}+p_{6y})+\tfrac1{\sqrt3}(p_{2x}+p_{5x})\\
b_{16}&=&\tfrac14(p_{1x}-p_{3x}+p_{4x}-p_{6x})+\tfrac1{\sqrt{48}}(p_{1y}+p_{3y}+p_{4y}+p_{6y})+\tfrac1{\sqrt3}(p_{2y}+p_{5y})
\end{eqnarray*}
Character 11:
Dimension: 2 Multiplicity: 1, i.e. the following are eigen vectors for $H$:
\begin{eqnarray*}
b_{17}&=&\tfrac12(p_{1z}-p_{3z}+p_{4z}-p_{6z}),\\
b_{18}&=&\tfrac1{\sqrt3}(p_{2z}+p_{5z})
+\tfrac1{\sqrt{12}}(-p_{1z}-p_{3z}-p_{4z}-p_{6z})
\end{eqnarray*}
Character 12:
Dimension: 6 Multiplicity: 3, i.e. the following SALCs are not necessarily eigen vectors for $H$ and $H$ has at most three distinct eigen values on this space:
\begin{eqnarray*}
b_{19}&=&\tfrac12(-s_1+s_3-s_4+s_6)\\
b_{20}&=&\tfrac12(-p_{1x}+p_{4x})+\tfrac14(-p_{3x}+p_{6x})+\tfrac{\sqrt3}4(p_{3y}-p_{6y})\\
b_{21}&=&\tfrac12(-p_{1y}+p_{4y})+\tfrac14(-p_{3y}+p_{6y})+\tfrac{\sqrt3}4(-p_{3x}+p_{6x})\\
b_{22}&=&\tfrac1{\sqrt{12}}(-s_1-s_3-s_4-s_6)+\tfrac1{\sqrt3}(s_2+s_5)\\
b_{23}&=&\tfrac1{\sqrt{48}}(-p_{1x}-p_{3x}+p_{4x}+p_{6x})+\tfrac14(p_{1y}-p_{3y}-p_{4y}+p_{6y})+\tfrac1{\sqrt3}(p_{2x}-p_{5x})\\
b_{24}&=&\tfrac14(-p_{1x}+p_{3x}+p_{4x}-p_{6x})+\tfrac1{\sqrt{48}}(-p_{1y}-p_{3y}+p_{4y}+p_{6y})+\tfrac1{\sqrt3}(p_{2y}-p_{5y})
\end{eqnarray*}
Maximal number of distinct eigen values of $H$: 16. The eigen vectors: $b_3$ and $b_4$ are linear combinations of $p_x$- and $p_y$ orbitals and the six eigen vectors: $b_5,b_8,b_9,b_{10},b_{17},b_{18}$ are only linear combinations of the $p_z$-orbitals. The remaining 16 eigen vectors are linear combinations of $s$-, $p_x$ and $p_y$-orbitals.