Find the table of characters of $\Gl(3,\Z_2)$. Find a cyclic subgroup of order $7$.

Enter the following commands in sage:

G=GL(3,2)
Reps=G.conjugacy_classes_representatives()
for g in Reps:
    cg=G.conjugacy_class(g)
    print(cg,len(cg))
latex(G.character_table())
This gives you $6$ conjugacy classes, representatives thereof are: $$ E=\left(\begin{array}{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}\right), A=\left(\begin{array}{ccc} 0&1&0\\ 1&0&0\\ 0&0&1 \end{array}\right), B=\left(\begin{array}{ccc} 0&0&1\\ 1&0&1\\ 0&1&1 \end{array}\right) $$ and $$ C=\left(\begin{array}{ccc} 0&0&1\\ 1&0&0\\ 0&1&1 \end{array}\right), D=\left(\begin{array}{ccc} 0&0&1\\ 1&0&1\\ 0&1&0 \end{array}\right), F=\left(\begin{array}{ccc} 1&0&0\\ 0&0&1\\ 0&1&1 \end{array}\right)~. $$ The sizes of the corresponding conjugacy classes: $1,21,42,24,24,56$ and the character table: $$ \begin{array}{c|rrrccr} \Gl(2,\Z_3)&1E&21A&42B&24C&24D&56F\\ \hline \chi_1&1 & 1 & 1 & 1 & 1 & 1 \\ \chi_2&3 & -1 & 1 & \z_7^2 + \z_7^2 + \z_7 & -\z_7^4 - \z_7^2 - \z_7 - 1 & 0 \\ \chi_3&3 & -1 & 1 & -\z_7^4 - \z_7^2 - \z_7 - 1 & \z_7^4 + \z_7^2 + \z_7 & 0 \\ \chi_4&6 & 2 & 0 & -1 & -1 & 0 \\ \chi_5&7 & -1 & -1 & 0 & 0 & 1 \\ \chi_6&8 & 0 & 0 & 1 & 1 & -1 \end{array} $$ where $\z_7\colon=e^{2\pi i/7}$. Finally the commands
i=0
while(order(G[i]) < 7): i += 1
a=G[i]
print(a)
H=G.subgroup([a])
H.cayley_table()
show the Cayley table of the cyclic group generated by 'a', which is given by $$ \left(\begin{array}{ccc} 0&0&1\\ 0&1&1\\ 1&1&0 \end{array}\right) $$