1. By Laplace's expansion and induction on $n$ we get for $c_n(z)=\det(A-z)$ and
$c_{n-1}(z)=z^{n-1}+a_{n-1}z^{n-2}+\cdots+a_1$:
\begin{eqnarray*}
c_n(z)
&=&-zc_{n-1}(z)+(-1)^{n-1}(-a_0)\\
&=&(-1)^n(z(z^{n-1}+a_{n-1}z^{n-2}+\cdots+a_1)+a_0)\\
&=&(-1)^n(z^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0)~.
\end{eqnarray*}
2. We obviously have $Ae_1=e_2,\ldots,Ae_{n-1}=e_n$ and thus for all $k=0,\ldots,n-1$: $A^ke_1=e_{k+1}$. Suppose for some $k < n$: $m(A)=A^k+c_{k-1}A^{k-1}+\cdots+c_0=0$, then $m(A)e_1=e_{k+1}+b_{k-1}e_k+\cdots+b_0e_1\neq0$.
3. $A$ is diagonalizable iff the minimal polynom $m$ has only simple roots and since $m=c_A$, $A$ is diagonalizable iff $c_A$ has only simple roots.