For $n_1,n_2,\ldots\in\N$ we put
\begin{eqnarray*}
I_{n_1}&\colon=&(\la n_1+1\ra,\la n_1\ra),\\
I_{n_1,n_2}&\colon=&(\la n_1,n_2\ra,\la n_1,n_2+1\ra),\\
I_{n_1,n_2,n_3}&\colon=&(\la n_1,n_2,n_3+1\ra,\la n_1,n_2,n_3\ra,
\quad\mbox{etc.}
\end{eqnarray*}
Then the following holds:
- $\theta$ is a homeomorphism from $I_{n_1,\ldots,n_k}$ onto $I_{n_2,\ldots,n_k}$.
- $I_{n_1,\ldots,n_k,n_{k+1}}\sbe I_{n_1,\ldots,n_k}$.
- For all $j\leq k$: $a_j|I_{n_1,\ldots,n_k}=n_j$.
- The open interval $I_{n_1,\ldots,n_k}$ has length at most $2^{-k}$. Thus if $a_j(x)=a_j(y)=n_j$ for all $j\leq k$, then $|x-y|\leq2^{-k}$.
1. is a consequence of