$b_1=(1,2)$ and $b_2=(2,1)$ form a basis for $\R^2$. Compute the trace of the linear mapping $u$ given by $u(b_1)=b_1-b_2$, $u(b_2)=b_1+b_2$.
0. The matrix of $u$ with respect to the basis $b_1,b_2$ is $$ \left(\begin{array}{cc} 1&1\\ -1&1 \end{array}\right) $$ and thus the trace of $u$ is $2$.
1. Choose a euclidean product $\la.,.\ra$ such that $b_1,b_2$ is orthonormal, then $\la u(b_1),b_1\ra=1$ and $\la u(b_2),b_2\ra=1$. Hence $\tr u=2$.
2. $b_1,b_2$ are orthogonal in $\R_1^2$. Since $\la b_1,b_1\ra=3$ and $\la b_2,b_2\ra=-3$ we get $$ \tr(u)=\tfrac13(\la u(b_1),b_1\ra-\la u(b_2),b_2\ra) =\tfrac13(\la b_1-b_2,b_1\ra-\la b_1+b_2,b_2\ra) =2~. $$ 3. If we use the canonical euclidean product, we get for the Gramian and $(\la u(b_j),b_k\ra)$: $$ \left(\begin{array}{cc} 5&4\\ 4&5 \end{array}\right), \quad \left(\begin{array}{cc} 1&-1\\ 9&9 \end{array}\right) $$ It follows that $$ \left(\begin{array}{cc} 5&4\\ 4&5 \end{array}\right)^{-1} =\left(\begin{array}{cc} 5/9&-4/9\\ -4/9&5/9 \end{array}\right) $$ and thus by the formula in exam: $$ \tr(u)=\frac59+\frac49-4+5=2~. $$ Calculationally the last two solutions are definitely not the most effective ones, but this may change.