Let $A\in\Ma(m+n,\R)$ be the block matrix $$ A=\left( \begin{array}{cc} A_{11}&A_{12}\\ A_{21}&A_{22} \end{array} \right)~. $$ If $A_{11}\in\Ma(m,\R)$ is invertible then $$ \det A=\det(A_{11})\det(A_{22}-A_{21}A_{11}^{-1}A_{12})~. $$
We have $$ \left(\begin{array}{cc} 1&0\\ -A_{21}A_{11}^{-1}&1 \end{array}\right) \left(\begin{array}{cc} A_{11}&A_{12}\\ A_{21}&A_{22} \end{array}\right) \left(\begin{array}{cc} 1&-A_{11}^{-1}A_{12}\\ 0&1 \end{array}\right) =\left(\begin{array}{cc} A_{11}&0\\ 0&A_{22}-A_{21}A_{11}^{-1}A_{12} \end{array}\right)~. $$ Since the determinants of the first and the third matrix are $1$ (cf. exam), we conclude by exam that $$ \det(A)=\det(A_{11})\det(A_{22}-A_{21}A_{11}^{-1}A_{12})~. $$