There is a unique bi-linear map $\R_1^3\times\R_1^3\rar\R_1^3$, $(x,y)\mapsto x*y$ with the following properties:
- For all $x,y\in\R_1^3$: $y*x=-x*y$.
- $e_0*e_1=e_2$, $e_1*e_2=-e_0$, $e_2*e_0=e_1$.
1. Verify that for all $x,y\in\R_1^3$: $\la x,x*y\ra=\la y,x*y\ra=0$. Thus given any pair of vectors $(x,y)$ the vector $x*y$ is orthogonal to both $x$ and $y$. 2. For all $x\in\R_1^3$ the linear map $y\mapsto x*y$ is skew-symmetric on $\R_1^3$. It follows that $\o:(x,y,z)\mapsto\la x*y,z\ra$ is a volume-form on $\R_1^3$; show that $\o(e_0,e_1,e_2)=+1$, i.e. by
lemma: $\o(x_0,x_1,x_2)=\det(e_j^*(x_k))$. 3. Verify Jacobi's identity: for all $x,y,z$: $x*(y*z)+y*(z*x)+z*(x*y)=0$.
1. These conditions imply that for $x=\sum x_je_j$ and $y=\sum y_ke_k$:
$$
x*y
=-(x_1y_2-x_2y_1)e_0+(x_2y_0-x_0y_2)e_1+(x_0y_1-x_1y_0)e_2
$$
i.e. $(x,y)\mapsto x*y$ is unique. Moreover
$$
\la x,x*y\ra
=(x_0y_1-x_1y_0)x_2+(x_1y_2-x_2y_1)x_0+(x_2y_0-x_0y_2)x_1
=0
$$
and $\la y,x*y\ra=-\la y,y*x\ra=0$.