The mapping $\Psi(z)f\colon=f(zw)$ is a unitary representation of $S^1=\UU(1)$ in the space $L_2(\C,\g)$ with the gaussian measure $\g(dw)=(2\pi)^{-1}e^{-|w|^2/2}\,dw$. 2. Verify by means of
exam that for smooth functions $f$: $$ \ttdl t0\Psi(e^{it})f(w)=iw\pa_wf(w)-i\bar w\pa_{\bar w}f(w) $$