Find the table of characters of the symmetry group $C_{6v}\times\Z_2$ of benzene $\chem{C_6H_6}$.

$C_{6v}$ is generated by two elements: $C,S$, which satisfy the relations: $C^6=S^2=CSCS=E$; it has six characters $\chi_1,\ldots,\chi_6$ and the following representatives of the conjugacy classes (cf. subsection): $$ \{E\},\{C,C^5\},\{C^2,C^4\},\{C^3\},\{\s,\s C^4,\s C^2\},\{\s C^1,\s C^5,\s C^3\} $$ $\Z_2$ has two characters $\psi_1,\psi_2$, representatives $e,a$: $$ \begin{array}{c|rrrrrr} C_{6v}&1E&1C^3&3\s&2C&2C^2&3\s C\\ \hline \chi_1&1 & 1 & 1 & 1 & 1 & 1 \\ \chi_2&1 & -1 & -1 & -1 & 1 & 1 \\ \chi_3&1 & -1 & 1 & -1 & 1 & -1 \\ \chi_4&1 & 1 & -1 & 1 & 1 & -1 \\ \chi_5&2 & -2 & 0 & 1 &-1 & 0 \\ \chi_6&2 & 2 & 0 & -1 &-1 & 0 \end{array} \qquad\qquad \begin{array}{c|rr} \Z_2&1e&1a\\ \hline \psi_1&1 & 1\\ \psi_2&1 & -1 \end{array} $$ Thus $C_{6v}\times\Z_2$ has 12 characters: $\chi_j\otimes\psi_k$. $E=(123456)$, $C=(234561)$, $S=(165432)$, $C^3=(456123)$, $C^4=(561234)$, $C^3S=(432165)$,

SAGE

CSF.$\la$C,S,F$\ra$=FreeGroup()
G=CSF/[C^6,S^2,F^2,C*S*C*S,C*F*C^5*F,S*F*S*F]
Reps=G.conjugacy_classes_representatives()
for g in Reps:
    cg=G.conjugacy_class(g)
    print(g, len(cg))
print G.character_table()
$$ \begin{array}{c|rrrrrrrrrrrr} C_{6v}\times\Z_2&1E&1C^3&3S&2C&2C^4&3C^3S&1F&1C^3F&3SF&2CF&2C^4F&3C^3SF\\ \hline \vp_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &1& 1 & 1 \\ \vp_2 & 1 & -1& -1& -1& 1 & 1 & -1& 1 & 1 &1& -1& -1\\ \vp_3 & 1 & -1& -1&-1 & 1 & 1 & 1 & -1& -1&-1& 1 & 1 \\ \vp_4 & 1 & -1& 1 & -1& 1 & -1& -1& 1 & -1&1& -1& 1 \\ \vp_5 & 1 & -1& 1 &-1 & 1 & -1& 1 & -1& 1 &-1& 1 & -1\\ \vp_6 & 1 & 1 & -1& 1 & 1 & -1& -1& -1& 1 &-1& -1& 1 \\ \vp_7 & 1 & 1 & -1& 1 & 1 & -1& 1 & 1 & -1&1& 1 & -1\\ \vp_8 & 1 & 1 & 1 & 1 & 1 & 1 & -1& -1& -1&-1& -1& -1\\ \vp_9 & 2 & -2& 0 & 1 & -1& 0 & -2& 2 & 0 &-1& 1 & 0 \\ \vp_{10}& 2 & -2& 0 & 1 & -1& 0 & 2 & -2& 0 &1& -1& 0 \\ \vp_{11}& 2 & 2 & 0 & -1& -1& 0 & -2& -2& 0 &1& 1 & 0 \\ \vp_{12}& 2 & 2 & 0 & -1& -1& 0 & 2 & 2 & 0 &-1& -1& 0 \end{array} $$