From now on we will always add the factor $1/p!$ to the inner product on $\O_p(E)$, but not on ${\cal T}_p(E)$.
This way the set $$ e_{j_1}\wedge\ldots\wedge e_{j_p},\quad 1\leq j_1 < j_2 < \cdots < j_p \leq n $$ becomes an orthonormal basis for $\O_p(E)$ and for all $x_1,\ldots,x_p,y_1,\ldots y_p\in E$ we have in $\O_p(E)$: \begin{equation}\label{ipteq2}\tag{IPT2} \la x_1\wedge\ldots\wedge x_p,y_1\wedge\ldots\wedge y_p\ra =\det(\la x_j,y_k\ra) \end{equation} So $\la x_1\wedge\ldots\wedge x_p,x_1\wedge\ldots\wedge x_p\ra$ is just the determinant of the Gramian of the vectors $x_1,\ldots,x_n$. In particular, if $x_1,\ldots,x_p$ is an orthonormal set of vectors in $E$ satisfying $\la x_j,x_j\ra=\e_j=\pm1$, then $$ \la x_1\wedge\ldots\wedge x_p,x_1\wedge\ldots\wedge x_p\ra =\det(\la x_j,x_k\ra) =\prod_j\la x_j,x_j\ra =\prod\e_j~. $$ $\proof$ 1. It suffices to verify that $$ \la x\otimes x_1\otimes\ldots\otimes x_p,y_1\otimes\ldots\otimes y_{p+1}\ra =\la x_1\otimes\ldots\otimes x_p, x^\flat\contract y_1\otimes\ldots\otimes y_{p+1}\ra $$ By definition the left hand side is $\la x,y_1\ra\la x_1,y_2\ra\ldots\la x_p,y_{p+1}\ra$ and the right hand side equals $x^\flat(y_1)\la x_1,y_2\ra\ldots\la x_p,y_{p+1}\ra$.